220. F. Nematollahi, V. Apalkov, and M. I. Stockman, Phosphorene in Ultrafast Laser Field, Phys. Rev. B 97, 035407-1-6 (2018). [ PDF file]
219. S.
A. O. Motlagh, J.-S. Wu, V. Apalkov, and M. I. Stockman, Fundamentally Fastest
Optical Processes at the Surface of a Topological
Insulator, arXiv:1807.02139 [cond-mat.mes-hall], 1-10
(2018). [
PDF file]
218.
S.
A. Oliaei Motlagh, J.-S. Wu, V. Apalkov, and M. I. Stockman,
Femtosecond Valley
Polarization and Topological Resonances in Transition
Metal Dichalcogenides, Phys. Rev. B 98, 081406(R)-1-6
(2018).
[
PDF file] [PDF file]
217.
L. Kumarapperuma,
M. Premaratne, P. K. Jha, M. I. Stockman, and G. P. Agrawal,
Complete
Characterization of the Spasing (L-L) Curve of a
Three-Level Quantum Coherence Enhanced Spaser for Design
Optimization, Appl. Phys. Lett. 112, 201108
(2018). [
PDF file]
216.
M.
I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A.
Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.
Shalaev, A. Boltasseva, B. Gholipour, H. N. S.
Krishnamoorthy, K. MacDonald, C. Soci, N. Zheludev, V.
Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L.
Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V.
Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D.
Wang, W. Wang, T. W. Odom, N. van Hulst, and M. Kling, Roadmap on Plasmonics,
Journal of Optics 20,
043001-1-39 (2018). [
PDF file]
215.
M.
S.
Wismer, M. I. Stockman, and V. S. Yakovlev, Ultrafast
Optical Faraday
Effect in Transparent Solids, Phys. Rev. B 96,
224301 (2017).
214.
B. B. Liu, W. R. Zhu, S. D. Gunapala, M. I. Stockman, and M.
Premaratne, Open
Resonator Electric Spaser, ACS Nano 11, 12573-12582
(2017).
[
[ PDF file]
212. D.-B. Li, X.-J. Sun, Y.-P. Jia, M. I. Stockman, H. P. Paudel, H. Song, H. Jiang, and Z.-M. Li, Direct Observation of Localized Surface Plasmon Field Enhancement by Kelvin Probe Force Microscopy, Light Sci. Appl. 6, e17038-1-7 (2017). 10.1038/lsa.2017.38. [ PDF file]
211.
H. Koochaki Kelardeh, V. Apalkov, and M. I. Stockman, Graphene
Superlattices
in Strong Circularly Polarized Fields: Chirality, Berry
Phase, and Attosecond Dynamics, Phys. Rev. B 96,
075409-1-8 (2017). [
PDF file]
210.
E. I. Galanzha, R. Weingold, D. A. Nedosekin, M.
Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G.
Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I.
Plekhanov, M. I. Stockman, and V. P. Zharov, Spaser as a
Biological Probe, Nat. Commun. 8, 15528-1-7
(2017). 10.1038/ncomms15528.
[
PDF file]
See also
a News and Views story:
C. Alix-Panabieres and K. Pantel, Biological Labels: Here
Comes the Spaser, Nat. Mater. 16, 790-791
(2017). 10.1038/nmat4943 [
PDF file]
209.
S. A. Oliaei Motlagh, V. Apalkov, and M. I. Stockman, Interaction
of
Crystalline Topological Insulator with an Ultrashort Laser
Pulse, Phys. Rev. B 95, 085438-1-8 (2017). [
PDF file]
208.
J. Schötz, B. Förg, M. Förster, W. A. Okell, M. I. Stockman,
F. Krausz, P. Hommelhoff, and M. F. Kling, Reconstruction
of Nanoscale near Fields by Attosecond Streaking, IEEE
J. Sel. Top. Quant. Elec. 23, 1-11 (2017). [
PDF file]
207. A. S. Kirakosyan, M. I. Stockman, and T. V. Shahbazyan, Surface Plasmon Lifetime in Metal Nanoshells, Phys. Rev. B 94, 155429-1-8 (2016). [ PDF file]
206. Y. Abate, S. Gamage, Z. Li, V. Babicheva, M. H. Javani, H. Wang, S. B. Cronin, and M. I. Stockman, Nanoscopy Reveals Surface-Metallic Black Phosphorus, Light Sci. Appl. 5, e16162-1-7 (2016). [ PDF file]
205.
H.
K. Kelardeh, V. Apalkov, and M. I. Stockman, Attosecond
Strong-Field Interferometry in Graphene: Chirality,
Singularity, and Berry Phase, Phys. Rev. B 93,
155434-1-7 (2016). [ PDF file]
204.
Y.
Abate, D. Seidlitz, A. Fali, S.
Gamage, V. E. Babicheva, V. S.
Yakovlev, M. I. Stockman, R.
Collazo, D. E. Alden, and N.
Dietz, Nanoscopy of Phase
Separation in InxGa1-xN
Alloys, ACS Appl. Mater.
Inter. 8, 23160−23166
(2016).
[
PDF
file]
203. M.
H. Javani and M. I. Stockman, Real and Imaginary
Properties of Epsilon-near-Zero Materials, Phys. Rev.
Lett. 117, 107404-1-6 (2016). [
PDF
file]
202. B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. Trushin, A. Azzeer, M. Stockman, D. E. Kim, F. Krausz, P. Hommelhoff, and M. Kling, Attosecond Nanoscale near-Field Sampling, Nature Communications 7, 11717-1-7 (2016). [ PDF file]
201. M. S. Wismer, S. Y. Kruchinin, M. Ciappina, M. I. Stockman, and V. S. Yakovlev, Strong-Field Resonant Dynamics in Semiconductors, Phys. Rev. Lett. 116, 197401-1-5 (2016). [ PDF file]
200. V. S. Yakovlev, S. Y. Kruchinin, T. Paasch-Colberg, M. I. Stockman, and F. Krausz, Ultrafast Control of Strong-Field Electron Dynamics in Solids, in Ultrafast Dynamics Driven by Intense Light Pulses, edited by M. Kitzler and S. Gräfe (Springer International Publishing, 2016), Vol. 86, p. 295-315; arXiv:1502.02180.
199. V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, Atomic-Scale Diffractive Imaging of Sub-Cycle Electron Dynamics in Condensed Matter, Sci. Rep, 5, 145811-1-13 (2015). [ PDF file]
198. Y. Abate, R. E. Marvel, J. I. Ziegler, S. Gamage, M. H. Javani, M. I. Stockman, and R. F. Haglund, Control of Plasmonic Nanoantennas by Reversible Metal-Insulator Transition, Sci. Rep, 5, 13997-1-8 (2015). [ PDF file]
197. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Ultrafast Field Control of Symmetry, Reciprocity, and Reversibility in Buckled Graphene-Like Materials, Phys. Rev. B 92, 045413-1-9 (2015). [ PDF file]
196.
Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V.
Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy
Reveals Metallic Black Phosphorus, arXiv:1506.05431,
1-9 (2015).
195. Mark I. Stockman, Nanoplasmonic Sensing and Detection, Science 348, 287-288 (2015) [ PDF file]
194. V. S. Yakovlev, S. Y. Kruchinin, T. Paasch-Colberg, M. I. Stockman, and F. Krausz, Ultrafast Control of Strong-Field Electron Dynamics in Solids, arXiv:1502.02180, 1-21 (2015).
193. V. Apalkov and M. I.
Stockman, Theory of Solids in Strong Ultrashort Laser
Fields, in Attosecond Nanophysics, edited by P.
Hommelhoff and M. F. Kling (Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2014), p. 197-234.
192. M. I. Stockman,
Quantum Nanoplasmonics, in: Photonics,
Volume II: Scientific Foundations,
Technology and Applications, edited by
D. L. Andrews (John Wiley & Sons, Inc.,
Hoboken, NJ, USA., 2015), p. 85-132.
191. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in Ultrafast and Superstrong Laser Fields, Phys. Rev. B 91, 045439-1-8 (2015). [ PDF file]
190. Ekaterina I. Galanzha, Robert Weingold, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Alexander S. Kuchyanov, Roman G. Parkhomenko, Alexander I. Plekhanov, Mark I. Stockman, and Vladimir P. Zharov, Spaser as Novel Versatile Biomedical Tool, arXiv:1501.00342 (2015)
189.
M.
I. Stockman, Nanoplasmonics: Fundamentals and Applications,
in Nano-Structures for Optics and Photonics, edited by
B. di Bartolo et al. (Springer Netherlands, 2015).
188. S. Ghimire, G. Ndabashimiye, A. D. DiChiara, E. Sistrunk, M. I. Stockman, P. Agostini, L. F. DiMauro, and D. A. Reis, Strong-Field and Attosecond Physics in Solids, J. Phys. B: Atom. Mol. Opt. Phys. 47, 204030-1-10 (2014). [ PDF file]
187. M.
Stockman, Plasmonic Lasers: On the Fast Track,
Nat. Phys. 10,799-800 (2014), doi:10.1038/nphys3127.
186. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark States of Graphene Monolayer in Strong Electric Field, arXiv:1405.1141 (2014); Phys. Rev. B 90 085313-1-11 (2014). [ PDF file]
185. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids, Phys. Rev. Lett. 113, 213901-1-5 (2014). [ PDF file]
184. W. Zhu, M. Premaratne, S. D. Gunapala, G. P. Agrawal, and M. I. Stockman, Quasi-Static Analysis of Controllable Optical Cross-Sections of a Layered Nanoparticle with a Sandwiched Gain Layer, Journal of Optics 16, 075003-1-6 (2014). [ PDF file]
183. H. K.
Kelardeh, V. Apalkov, and M. I. Stockman, Interaction of Graphene
Monolayer with Ultrashort Laser Pulse, arXiv:1401.5786
[cond-mat.mes-hall], 1-11 (2014).
182. Y.-J. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M. I. Stockman, C.-K. Shih, and S. Gwo, All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing, Nano Lett., 14, 4381–4388 (2014). (2014). [PDF file]
181. Vadym Apalkov and Mark I. Stockman, Proposed Graphene Spaser, Light: Science and Applications 3, e191-1-6 (2014) [ PDF file]; arXiv:1303.0220 [cond-mat.mes-hall], 1-5 (2013).
180. Ferenc Krausz and Mark I. Stockman, Attosecond Metrology: From Capturing Electrons toward Speeding up Signal Processing, Nat. Phot. 8, 205-213 (2014). [PDF file]
179. F. Süßmann, S. L. Stebbings, S. Zherebtsov, S. H. Chew, M. I. Stockman, E. Rühl, T. Fennel, U. Kleineberg, and M. F. Kling, Attosecond Nanophysics, in Attosecond and XUV Spectroscopy: Ultrafast Dynamics and Spectroscopy, edited by T. Schultz and M. Vrakking (John Wiley & Sons, 2014).
178. T.
Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin,
Saglam Ozge, S. Keiber, O. Razskazovskaya, S. Muhlbrandt, A.
Alnaser, M. Kubel, V. Apalkov, D. Gerster, J. Reichert, T.
Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S.
Yakovlev, R. Kienberger, and F. Krausz, Solid-State
Light-Phase Detector, Nat. Phot. 8, 214–218
(2014).
[PDF
file]
177. P.
Hommelhoff, M. F. Kling, and M. I. Stockman, Ultrafast
Phenomena on the Nanoscale, Ann. Phys-Berlin 525,
A13-A14 (2013).
176. Vadym Apalkov and Mark I. Stockman, Metal Nanofilm in Strong Ultrafast Optical Fields, arXiv:1209.2245 [cond-mat.mes-hall], 1-5 (2013); Phys. Rev. B 88, 245438-1-7 (2013). [PDF file]
175. M. I. Stockman, Nanoplasmonics: From Present into Future, in Plasmonics: Theory and Applications, edited by T. V. Shahbazyan and M. I. Stockman (Springer Dordrecht, Heidelberg, New York, London, 2013), Vol. 15, p. 1-101. [ PDF file]174. M. I. Stockman, Lasing Spaser in Two-Dimensional Plasmonic Crystals, NPG Asia Mater, 5, e71-e71, 2013. [ PDF file]
173. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. Proietti Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-Electron Nanoscopy Using Adiabatic Compression of Surface Plasmons, Nat. Nano, advance online publication, 10.1038/nnano.2013.207 (2013). [PDF file, PDF file]
172. M. I. Stockman, Spaser, Plasmonic Amplification, and Loss Compensation, in Active Plasmonics and Tuneable Plasmonic Metamaterials, edited by A. V. Zayats and S. Maier (John Wiley and Sons, Hoboken, NJ, 2013). [PDF file]
171. Dabing Li and Mark I. Stockman, Electric Spaser in the Extreme Quantum Limit, Phys. Rev. Lett. 110, 106803-1-5 (2013); arXiv:1211.0366 [cond-mat.mes-hall] 1-5 (2012) [PDF file]
170. Martin Schultze, Elisabeth Bothschafter, Annkatrin Sommer, Simon Holzner, Markus Fiess, Michael Hofstetter, Reinhard Kienberger, Vadym Apalkov, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz, Controlling Dielectrics with the Electric Field of Light, Nature 493, 75-78 (2013). doi: 10.1038/nature11720 (2012) [PDF file]
169. Agustin Schiffrin, Tim Paasch-Colberg, Nicholas Karpowicz, Vadym Apalkov, Daniel Gerster, Sascha Mühlbrandt, Michael Korbman, Joachim Reichert, Martin Schultze, Simon Holzner, Johannes Barth, Reinhard Kienberger, Ralph Ernstorfer, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz, Optical Field-Induced Current in Dielectrics, Nature 493, 70-74 (2013); doi: 10.1038/nature11567 (2012) [PDF file]
168. Vadym Apalkov and Mark I. Stockman, Theory of Dielectric Nanofilms in Strong Ultrafast Optical Fields, Phys. Rev. B 86, 165118-1-13 (2012) [ PDF file]
167. S. H. Chew, F. Sussmann, C. Spath, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, Time-of-Flight-Photoelectron Emission Microscopy on Plasmonic Structures Using Attosecond Extreme Ultraviolet Pulses, Appl. Phys. Lett. 100, 051904-4 (2012). doi: 10.1063/1.3670324. [ PDF file]
166. M. I. Stockman, Nanoplasmonics: Past, Present, and Glimpse into Future, Opt. Express 19, 22029-22106 (2011). doi: 10.1364/OE.19.022029.143. A. Rusina, M. Durach, K. A. Nelson,
and M. I. Stockman, Nanoconcentration
of Terahertz Radiation in Plasmonic Waveguides, Opt.
Expr. 16, 18576-18589
(2008) [PDF
file]; arXiv:0808.1324.
142. M. Durach, A. Rusina,
V. Klimov, and M. I. Stockman, Nanoplasmonic Renormalization
and Enhancement of Coulomb Interactions, New J. Phys.
10, 105011-1-14 (2008)
[PDF
file]; arXiv:0802.0229.
137. Maxim Durach, Anastasia Rusina, Keith Nelson, and Mark I. Stockman, Toward Full Spatio-Temporal Control on the Nanoscale, Nano Lett. 7, 3145-3149 (2007); (DOI:10.1021/nl071718g, 5 pages) (2007) [PDF file].
136. M. I. Stockman, M. F. Kling, U.
Kleineberg, F. Krausz, Attosecond Nanoplasmonic Field
Microscope, Nature Photonics 1, 539-544 (2007)
(DOI:10.1038/nphoton.2007.169) (2007) [PDF file].
134. M. I. Stockman, Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality, Preprint cond-mat/0611350 (2006), http://arxiv.org/abs/cond-mat/0611350; Phys. Rev. Lett. 98, 177404-1-4 (2007) [PDF file]
133. M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, Octupolar Metal Nanoparticles as Optically Driven, Coherently Controlled Nanomotors, Chem. Phys. Lett. 433, 130-135 (2006); doi:10.1016/j.cplett.2006.11.015 [PDF file]
132. K. Li, M. I. Stockman, and D. J. Bergman, Li, Stockman, and Bergman Reply to Comment On "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens", Phys. Rev. Lett. 97, 079702 (2006). [PDF file].
131
M.
130. M. I. Stockman, Electromagnetic Theory of SERS, in Springer Series Topics in Applied Physics, edited by K. Kneipp, M. Moskovits and H. Kneipp, Surface Enhanced Raman Scattering – Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006). [PDF file]
129. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, Generation of Traveling Surface Plasmon Waves by Free-Electron Impact, Nano Lett. 6, 1113-1115 (2006). [PDF file]
128. M. I. Stockman and P. Hewageegana, Nanolocalized Nonlinear Electron Photoemission under Coherent Control, Nano Lett. 5(11), 2325-2329 (2005) [PDF file].
127.
K. Li, M. I. Stockman, and D. J. Bergman, Enhanced Second
Harmonic Generation in a Self-Similar Chain of Metal
Nanospheres, Phys. Rev. B 72, 153401-1-4 (2005)
[PDF
file]
126.
M. I. Stockman, Giant Fluctuations of Second Harmonic
Generation on Nanostructured Surfaces, Chem. Phys. 318,
156-162 (2005) (Invited paper). [PDF
file]
125.
L. N. Gaier, M. Lein, M. I. Stockman, G. L. Yudin, P. B.
Corkum, M. Y. Ivanov, and P. L. Knight, Hole-Assisted
Energy Deposition in Dielectrics and Clusters in the
Multiphoton Regime, J. Mod. Optics 52, 1019-1030
(2005). [PDF
file]
124.
K. Li, Xiangting Li, M. I. Stockman, and D. J. Bergman, Surface
Plasmon Amplification by Stimulated Emission in Nanolenses,
Phys. Rev. B 71, 115409-1-5 (2005). [PDF
file]
123. I.
A. Larkin and M. I. Stockman, Imperfect Perfect Lens,
Nano Lett. 5(2), 339-343 (2005). [PDF
file]
122. M. I. Stockman, Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides, Phys. Rev. Lett. 93, 137404-1-4 (2004). [PDF file]
121. M. I. Stockman, From Nano-Optics to Street Lights, Nature Materials, 3, 423-424 (2004). [PDF file]; http://info.nature.com/cgi-bin24/DM/y/hPav0Bl1nN0Dj0O4L0AY
120. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon Hybridization in Nanoparticle Dimers, Nano Letters 4(5) 899-903 (2004). [PDF file]
119. D. J. Bergman and M. I. Stockman, Can We Make a Nanoscopic Laser?, Laser Phys. 14, 409-411 (2004). [PDF file]
118.
117.
M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent
Control
of Nanoscale Localization of Ultrafast Optical Excitation in
Nanosystems, Phys. Rev. B 69, 054202-1-10
(2004). [PDF
file]
116.
A. A. Mikhailovsky, M. A. Petruska, Kuiru Li, M. I. Stockman,
and V. I. Klimov, Phase-Sensitive Spectroscopy of Surface
Plasmons in Individual Metal Nanostructures, Phys. Rev.
B 69, 085401-1-5 (2004). [PDF
file]
115.
M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J.
Zyss, Enhanced Second Harmonic Generation By Metal
Surfaces with Nanoscale Roughness: Nanoscale Dephasing,
Depolarization, and Correlations, Phys. Rev. Lett. 92,
057402-1-4 (2004). [PDF
file].
114.
L. N. Gaier, M. Lein, M. I. Stockman, P. L. Knight, P. B.
Corkum, M. Yu. Ivanov and G. L. Yudin, Ultrafast
Multiphoton Forest Fires and Fractals in Clusters and
Dielectrics, J. Phys. B: At. Mol. Opt. Phys. 37,
L57-L67 (2004) [PDF
file].
113.
Kuiru Li, Mark I. Stockman, and David J. Bergman, Self-Similar
Chain
of Metal Nanospheres as an Efficient Nanolens, Phys.
Rev. Lett. 91, 227402-1-4 (2003) [PDF
file].
112.
M. I. Stockman, S. V. Faleev, and D. J. Bergman, Femtosecond
Energy Concentration in Nanosystems: Coherent Control,
Physica B: Physics of Condensed Matter 338, 361-365
(2003) [PDF
file].
111. M. I. Stockman, D. J. Bergman,
and T. Kobayashi, Coherent Control of Ultrafast
Nanoscale Localization of Optical Excitation Energy
[Invited Paper at Optical Science and Technology Conference
(2003 SPIE Annual Meeting)]. In: Plasmonics: Metallic
Nanostructures and Their Optical Properties (Naomi J. Halas,
Ed.), Proceedings of SPIE Vol. 5221, pp. 182-196
(2003).
110.
A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and
V. I. Klimov, Broadband
Near-Field Interference Spectroscopy of Metal
Nanoparticles Using a Femtosecond White-Light Continuum,
Optics Lett. 28, 1686-1688 (2003) [PDF
file].
109.
M. I. Stockman, Ultrafast
Processes in Metal-Insulator and Metal-Semiconductor
Nanocomposites, In: Ultrafast Phenomena in
Semiconductors VII, Proceedings of SPIE Vol. 4992,
60-74 (2003) (K.F.Tsen, J.Song, and H.Jiang, eds.)
(Photonics West 2003 Conference, 2003; Invited talk).
(PDF
Preprint).
108.
M. I. Stockman, S. V.
Faleev, and D. J. Bergman, Coherently-Controlled
Femtosecond Energy Localization on Nanoscale, In:
Ultrafast Phenomena XIII (Springer Series in Chemical
Physics), pp. 496-498 (Springer,
107.
D. J. Bergman and M. I.
Stockman, Surface Plasmon Amplification by Stimulated
Emission of Radiation: Quantum Generation of Coherent
Surface Plasmons in Nanosystems, Phys.
Rev. Lett. 90, 027402 (2003). [PDF
file].
106. S. V. Faleev and M. I. Stockman, Self-Consistent
Random-Phase Approximation for Interacting Electrons in
Quantum Well and Intersubband Absorption, Phys. Rev. B
66, 085318-1-11 (2002). [PDF
file].
105. M. I. Stockman, S. V. Faleev, and D.
J. Bergman, Coherently-Controlled Femtosecond Energy
Localization on Nanoscale, Appl. Phys. B 74(9)
63-67 (2002) [PDF
file].
104. M. I. Stockman, S. V. Faleev, and D.
J. Bergman, Coherent Control of Femtosecond Energy
Localization in Nanosystems, Phys. Rev. Lett. 88(6)
067402-1-4 (2002) [PDF
file ].
103. M. I. Stockman, S. V. Faleev, and D.
J. Bergman,
102. S. V. Faleev and M.
I. Stockman, Self-Consistent RPA for Two-Dimensional
Electron Gas at Finite Temperatures, Phys. Rev. B 63,
193302-1-4 (2001). [PDF
file ].
101. M. I. Stockman, Femtosecond
and Attosecond Giant Optical Responses and Fluctuations in
Disordered Clusters, Nanocomposites, and Rough Surfaces,
In: Ultrafast Phenomena XII (Springer Series in Chemical
Physics), T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F.
Scherer, eds. (Springer, Berlin, Heidelberg, New York, 2001),
p.398-400.
100. M. I. Stockman, Local
Fields'
Localization and Chaos and Nonlinear-Optical Enhancement in
Clusters and Composites, In: Optics of Nanostructured
Materials, V. A. Markel and T. F. George, eds. (Wiley, New
York, 2000), p. 313-354. [
Preprint: PDF file (2.7 MB)].
99. S. V. Faleev and M. I. Stockman, Self-Consistent RPA for Two-Dimensional Electron Gas: Kadanoff-Baym-Keldysh Approach, Phys. Rev. B 62(24) 16707-16714 (2000). [ PDF file] .
98. M. I. Stockman, Giant Attosecond Fluctuations of Local Optical Fields in Disordered Nanostructured Media, Phys. Rev. B 65(15) 10494-10497 (2000). [ PDF file] .
97. M. I. Stockman, Femtosecond Optical Responses of Disordered Clusters, Composites, and Rough Surfaces; "The Ninth Wave" Effect, Phys. Rev. Lett. 84(5), 1011-1014 (2000). [PDF file]
96. M. I. Stockman, K. B. Kurlayev, and T. F. George, Linear and Nonlinear Optical Susceptibilities of Maxwell-Garnett Composites: Dipolar Spectral Theory, Phys. Rev. B 60(24), 17071-17083 (1999). [PDF file ].
95. M. I. Stockman, Local Fields' Localization and Chaos and Nonlinear-Optical Enhancement in Composites, In: Computational Studies of New Materials, T. F. George and D. Jelski, eds. (World Scientific Publishing Company, Singapore, 1999), pp. 244-272. [PDF file ].
94. S. V. Faleev and M. I. Stockman, Light-Induced Drift in Semiconductor Heterostructures: Microscopic Theory , Phys. Rev. B, 59(11) 7338-7341 (1999). [ PDF file]
93. J. R. Evans and M. I. Stockman, Turbulence and Spatial Correlation of Currents in Quantum Chaos, Phys. Rev. Lett. 81(21) 4624-4627(1998). [ PDF file ]
92. M. I. Stockman, L. N.
Pandey, and T. F. George, Enhanced Nonlinear-Optical
Responses of Disordered Clusters and Composites (an
invited paper), In: Nonlinear Optical Materials
(Jerome V. Moloney, editor), IMA Volumes in Mathematics and
its Applications, v.101, p.225,
91. Y. Ohtsuki, M. I. Stockman, L. N. Pandey, and T. F. George, Laser-Induced Long-Lifetime Electron Tunneling in a Biased Asymmetric Double Quantum Well, Superlattices and Microstructures, 23(2), 273-282 (1998).
90. M. I. Stockman, Chaos and Spatial Correlations for Dipolar Eigenproblems, Phys. Rev. Lett., 79(22), 4562 (1997). [ PDF file (3.2 MB) of the paper].
89. M. I. Stockman, Inhomogeneous Eigenmode Localization, Chaos, and Correlations in Large Disordered Clusters, Phys. Rev. E 56(6) 6494 (1997) . [ PDF file (8 MB)].
88. L. Z. Benimetskaya, A.
L. Kozionov, S. Yu. Novozhilov, and M. I. Stockman, On
Mechanism of Nonlinear Laser Cleavage of DNA, Biofizika
(
87. L.S.Muratov, M.I.Stockman,L.N.Pandey, T.F.George, W.J.Li, B.D.McCombe, J.P.Kaminski, S.J.Allen, andW.J.Schaff, Absorption Saturation Studies of Landau Levels in Quasi-Two-Dimensional Systems, Superlattices and Microstructures 21(4 ), 501-508 (1997). [ A PDF file (0.2 MB)].
86. M.I.Stockman, L.N.Pandey, and T.F.George, Inhomogeneous Localization of Polar Eigenmodes in Fractals, Phys.Rev. B 53(5), 2183-2186 (1996). [PDF file]
85. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Comment on ``Photon Scanning Tunneling Microscopy Images of Optical Excitations of Fractal Metal Colloid Clusters'', Phys. Rev. Lett. 75(12), 2450 (1995).
84. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Optical Absorption and Localization of Eigenmodes in Disordered Clusters, Phys. Rev. B 51(1), 185-195 (1995).
83. L.N.Pandey, L.S.Muratov, M.I.Stockman, and T.F.George, Dynamics of Double-Barrier Resonant Tunneling Structures, Phys. Stat. Solidi 185(1), 151-161 (1994).
82. M.I.Stockman and T.F.George, PhotonTunneling Microscope Reveals Local Hot Spots, Physics World 7 (9),27-28 (1994) (invited paper).
81. Y.Ohtsuki, L.N.Pandey, M.I.Stockman, and T.F.George, Laser-Induced Suppression of Electron Tunneling in a Biased Asymmetric Double Quantum Well, Phys. Rev. B 50(4), 2236-2240(1994).
80. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Giant Fluctuations of Local Optical Fields in Fractal Clusters, Phys. Rev. Lett. 72(15),2486-2489 (1994). [PDF file (648 kB)]
79. W.J.Li, B.D.McCombe, J.P.Kaminski, S.J.Allen, M.I.Stockman, L.S.Muratov, L.N.Pandey, T.F.George, and W.J.Shaff, Saturation Spectroscopy of Hot Carriers in Coupled Double Quantum Well Structures, Semicond. Sci. Tech. 9, 630-633 (1994).
78. W.J.Li, B.D.McCombe, M.I.Stockman, L.S.Muratov, L.N.Pandey, T.F.George, J.P.Kaminski, S.J.Allen, and W.J.Shaff, Subband-Landau-Level Relaxation in Single and Coupled-Double Quantum-Well Structures, in: Proceedings of the 6th International Conference on Modulated Semiconductor Structures, (Garmish-Partenkirchen, Germany, 1993).
77. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Intersubband Optical Bistability Induced by Resonant Tunneling in an Asymmetric Double Quantum Well, Phys. Rev. B 48(15), 10966-10971 (1993).
76. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Possibility of Intrinsic Optical (Far-IR) Bistability in an Asymmetric Double Quantum Well, Phys. Lett. A 179, 423-428(1993).
75. M.I.Stockman, L.S.Muratov,and T.F.George, Theory of Light-Induced Drift of Electrons in Coupled Quantum Wells, Phys. Rev. B 46(15), 9595-9602 (1992).
74. V.M.Shalaev, M.I.Stockman,and R.Botet. Resonant Excitations and Nonlinear Optics of Fractals, Physica A 185, 181-186 (1992).
73. M.I.Stockman, V.M.Shalaev,M.Moskovits, R.Botet, and T.F.George, Enhanced Raman Scattering by Fractal Clusters: Scale Invariant Theory, Phys. Rev. B 46(5), 2821-2830(1992).
72. M.I.Stockman, L.S.Muratov, L.N.Pandey, and T.F.George, Kinetics of Intersubband Optical Excitation and Photoinduced Electron Transfer in an Asymmetric Double Quantum Well, Phys. Rev. B 45(15), 8550-8561 (1992).
71. M.I.Stockman, L.S.Muratov,L.N.Pandey, and T.F.George, Light-Induced Electron Transfer Counter to an Electric Field Force in an Asymmetric Double Quantum Well, Phys.Lett. A 163 (3), 233-238 (1992).
70. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Photoinduced Electron Transfer Counter to the Bias Field in Coupled Quantum Wells, in: Photoinduced Charge Effects in Semiconductors: Photoconductivity, Spectroscopy and Electrooptics, Proceedings of Symposium D, Materials Research Society 1992 Spring Meeting, San Francisco, ed. byK.W.Goosen, N.M.Haegel, and D.D.Nolte, Mat. Res. Soc. Symp. Proc. 261,125-130 (1992).
69. A.V.Butenko, V.A.Markel, L.S.Muratov, V.M.Shalaev, and M.I.Stockman, Theory and Numerical Simulation of Optical Properties and Selective Photomodification of Fractal Clusters, in:Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack,New York, 1992).
68. Yu.E.Danilova, S.V.Karpov,A.K.Popov, S.G.Rautian, V.P.Safonov, V.V.Slabko, V.M.Shalaev, and M.I.Stockman, Experimental Investigation of Optical Nonlinearities of Silver Fractal Clusters,in: Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack, New York, 1992).
67. L.N.Pandey, M.I.Stockman, T.F.George, and Devaraj Sahu. Theoretical studies of Electron Transport in Quantum Well Structures, in: Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack, New York, 1992), pp.65-70.
66. M.I.Stockman, T.F.George, and V.M.Shalaev, Field Work and Dispersion Relations of Excitations on Fractals, Phys. Rev. B 44(1), 115-121 (1991).
65. A.V.Butenko, P.A.Chubakov,Yu.E.Danilova, S.V.Karpov, A.K.Popov, S.G.Rautian, V.P.Safonov, V.V.Slabko,V.M.Shalaev, M.I.Stockman, Nonlinear Optics of Metal Fractal Clusters, Z. Phys. D 17, 283-289 (1990).
64. V.A.Markel, L.S.Muratov, M.I.Stockman, and T.F.George, Theory and Numerical Simulation of Optical Propertiesof Fractal Clusters, Phys. Rev. B 43(10), 8183-8195 (1991). [ PDF file]
63. M.I.Stockman, L.N.Pandey, and T.F.George, Light-Induced Drift of Quantum Confined Electrons in Semiconductor Heterostructures, Phys. Rev. Lett. 65(27), 3433-3436 (1990).
62. M.I.Stockman, L.N.Pandey, and T.F.George, Light-Induced Drift of Quantum Confined Electrons in Semiconductor Heterostructures -- Reply, Phys. Rev. Lett. 67(1), 157 (1991).
61. T.T.Rantala, M.I.Stockman,D.A.Jelski, and T.F.George, Linear and Nonlinear Optical Properties of Small Silicon Clusters, J. Chem. Phys. 93(10), 7427-7438(1990).
60. M.I.Stockman, L.N.Pandey, and T.F.George, Effect of Light-Induced Drift in Confined Semiconductor Heterostructures, Technical Digest on Quantum Optoelectronics, 7,173-176 (1991) (Optical Society of America, Salt Lake City, Utah, 1991).
59. T.T.Rantala, M.I.Stockman,D.A.Jelski, and T.F.George, Optical (Hyper)Polarizabilities of Small Silicon Clusters, Mat. Res. Soc. Symp. Proc. 206, 85-90 (1991).
58. V.A.Markel, L.S.Muratov, and M.I.Stockman, Theory and Numerical Simulation of the Optical Properties of Fractal Clusters. ZhETF 98(3), 819-837 (1990) [Translation: Sov.Phys. JETP 71 (3), 455-464 (1990)].
57. T.T.Rantala, M.I.Stockman,and T.F.George, Monte-Carlo Simulation of Polarization-Selective Spectral Hole Burning in Fractal Clusters, in: Scaling in Disordered Materials:Fractal Structure and Dynamics, ed. by T.A.Witten, M.O.Robbins and J.P.Stokes, Proceedings of Symposium W (Extended Abstracts), Materials Research Society 1990 Fall Meeting (Materials Research Society, Pittsburgh,1990), pp.117-120.
56. V.A.Markel, L.S.Muratov, M.I.Stockman, and T.F.George, Scale-Invariant Theory of Optical Properties of Fractal Clusters, in: Scaling in Disordered Materials: Fractal Structureand Dynamics, ed. by T.A.Witten, M.O.Robbins and J.P.Stokes, Proceedings of Symposium W (Extended Abstracts), Materials Research Society 1990 Fall Meeting (Materials Research Society, Pittsburgh, 1990), pp.219-222.
55. M.I.Stockman, Possibilityof the Laser Nanomodification of Surfaces with the Use of the ScanningTunneling Microscope, Autometria #3, 30-41 (1989) [Translation: Optoelectronics, Instrumentation and Data Processing #3, 27-37 (1989)].
54. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Nonlinear Optical Susceptibilities of Fractal Clusters, Preprint #R527F of The L.V.Kirensky Institute of Physics, Krasnoyarsk,1988, 17 pages.
53. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Fractals: Giant Optical Nonlinearities in Optics of Fractal Clusters, Z. Phys. D 10(1), 81-92 (1988).
52. V.M.Shalaev, and M.I.Stockman. Fractals: Optical Susceptibility and Giant Raman Scattering, Z. Phys. D 10 (1), 71-79 (1988).
51. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov,A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Site-SpecificLaser Modification (Cleavage) of Oligodeoxynucleotides, in: Future Trends in Biomedical Applications of Lasers, SPIE Proc. 1525 , 210-211(1991).
50. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Site-Specific Laser Modification (Cleavage) of Oligodeoxynucleotides, Biopolymers 28(6), 1129-1147 (1989).
49. A.V.Karpov, A.K.Popov, S.G.Rautian, V.P.Safonov, Slabko V.V., V.M.Shalaev, and M.I.Stockman, Observation of a Wavelength- and Polarization-Selective Photomodification of Silver Clusters, Pis'ma ZhETF 48(10), 528-531 (1988) [Translation: JETP Lett. 48 (10),571-575 (1988)].
48. L.Z.Benimetskaya, I.I.Gitelzon, A.L.Kozionov, S.Yu.Novozhilov, V.N.Petushkov, N.S.Rodionova, and M.I.Stockman, Localizationof the Active Site of an Enzyme, Bacterial Luciferase, Using Two-QuantumAffinity Modification, in: Future Trends in Biomedical Applications of Lasers, SPIE Proc. 1525, 242-245 (1991).
47. L.Z.Benimetskaya, A.L.Kozionov, S.Yu.Novozhilov, V.N.Petushkov, N.S.Rodionova, and M.I.Stockman Localization of the Active Center of an Enzyme (Bacterial Luciferase) by Two-QuantumAffine Modification Dokl. Russ. Acad. Sci. 336(1), 114-117 (1994).
46. M.I.Stockman, Selective Two-Quantum Photomodification of Nucleic Acids, in: Molecular Mechanismsof Biological Effects of Optical Radiation, Nauka, Moscow, 1988.
45. V.A.Markel and M.I.Stockman, Kinetics of Two-Quantum Sensitized Excitation in Singlet and Singlet-Triplet Channels, Opt. Spektrosk. 67(1), 115-121 (1989) [Translation: Opticsand Spectroscopy 67(1), 64-68 (1989)].
44. L.A.Gelmedova, L.S.Muratov, and M.I.Stockman, Diffusion Phenomena Induced by Cleavage of Linear Macromolecules, Khimicheskaya Fizika [Chemical Physics] 6(2),234-244 (1987).
43. S.G.Rautian, V.P.Safonov, P.A.Chubakov, V.M.Shalaev, and M.I.Stockman, Surface-Enhanced Parametric Scattering of Light by Silver Clusters, Pis'ma ZhETF 47(4), 200-203 (1988) [Translation: JETP Lett. 47(4), 243-246 (1988)]
42. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Giant Impurity Nonlinearities in Optics of Fractal Clusters, ZhETF 94(1), 107-124 (1988) [Translation: Sov. Phys. JETP, 67 (1),60-69 (1988)].
41. V.M.Shalaev and M.I.Stockman, Optical Properties of Fractal Clusters (Susceptibility, Surface Enhanced Raman Scattering by Impurities), ZhETF 92(2), 509-522 (1987) [Translation: Sov. Phys. JETP 65(2), 287-294 (1987)].
40. M.I.Stockman, Local Photoprocesses Near the Tip of the Scanning Tunneling Microscope, Preprint #371 ofThe Institute of Automation and Electrometry of the Siberian Branch ofthe USSR Academy of Sciences, 1987, 18 pages.
39. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, High-Efficiency Complementary-Directed Laser Modification (Cleavage) of Oligodeoxynucleotides, Bioorganic Chem. 14(1), 48-57 (1988).
38. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Computer-Controlled Laser Photon-Correlation Spectrometer (Hardware, Algorithms of Data Processing and Codes), Autometria #3, 46-57 (1987).
37. M.I.Stockman, Activation of Chemical Reactions by Non-Small Equilibrium Fluctuations Induced byOptical Excitation of Condensed Media, Preprint #R243 of The Instituteof Automation and Electrometry, the Siberian Branch of the USSR Academyof Sciences, 1987, 15 pages.
36. V.A.Markel, and M.I.Stockman, NonlinearPhotoprocesses in Bichromophores. II. Correlated Fluctuations of Populationsand Fluorescence Intensities, Opt. Spektrosk. 56 (6), 1258-1262(1988) [Translation: Optics and Spectroscopy 56(6), 743-746 (1988)].
35. V.A.Markel, and
M.I.Stockman, NonlinearPhotoprocesses in Bichromophores.
34. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Computer-Controlled Laser Photon-Correlation Spectrometer (Hardware, Algorithms of Data Processing and Codes), Autometria #3,46-57 (1987).
33. V.A.Markel, and M.I.Stockman, Critical (Percolation) Behavior and Fractal Dimension of Aggregatesin Immunological Agglutination Reaction, Biopolymers and Cells #4 ,35-40 (1988).
32. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Kinetics of Immunological Reaction ofAgglutination and Rapid Determination of Bacteria Using an Automated LaserPhoton-Correlation Spectrometer, Doklady Academii Nauk SSSR 287(5),1239-1243 (1986) [Translation: Doklady Biochemistry 287, 125-129(1986)].
31. L.Z.Benimetskaya, A.L.Kozionov, L.S.Muratov, S.Yu.Novozhilov, and M.I.Stockman, Nonlinear Laser Photomodification of Nucleic Acids Induced by Intercalating Dyes, Biophysics 32(4), 716-731 (1987).
30. L.Z.Benimetskaya, N.V.Bulychev, V.V.Gorn, A.L.Kozionov, A.V.Lebedev, S.Yu.Novozhilov, G.A.Podyminogin, and M.I.Stockman, Direct Observation of the Selective Laser Photocleavage of DNA, Biophysics 31(1), 151-152 (1985).
29. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, Yu.E.Nesterikhin, S.Yu.Novozhilov, and M.I.Stockman, SelectiveLaser Splitting of Polyadenilate with the Use of a Fluorescent DerivativeDerivatives of Oligothymidilate, Bioorganic Chemistry 10 (4),520-527 (1984).
28. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Two-Quantum Selective Laser Modification of Poly-and Oligonucleotides in Complementary Complexes with Dansyl Derivatives of Oligonucleotides, Nucleic AcidRes. Symp. Series #14, s323-s324 (1984).
27. M.I.Stockman, Kinetics ofTwo-Photon Excitation of Impurity Centers in a Condensed Medium, ZhETF 87(1), 84-99 (1984). [Translation: Sov. Phys. JETP 60(1), 49-57 (1984)].
26. M.I.Stockman, Study of Dynamic Effects Using Phase Conjugation of Light Waves, Phys. Lett. A 94 (9),430-433 (1983).
25. A.V.Ghiner M.I.Stockman, andM.A.Vaksman, Surface Light-Induced Drift of a Rarefied Gas, Phys.Lett. A 96 (2), 79-82 (1983).
24. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, Yu.E.Nesterikhin, S.Yu.Novozhilov, S.G.Rautian, and M.I.Stockman, Two-Quantum Selective Laser Scission of Polyadenilic Acid in the Complementary Complex with a Dansyl Derivative of Oligothymidilate, FEBS Lett. 163(1), 144-149 (1983).
23. L.Z.Benimetskaya, M.I.Stockman, et all, Nonlinear Laser Scission of RNA Selective in the Base Set, Pis'ma ZhETF 38(9), 424-427 (1983). [Translation: JETP Lett. 38 (9),513-517 (1983)].
22. L.Z.Benimetskaya, A.L.Kozionov, S.Yu.Novozhilov, and M.I.Stockman, Specificity of the Nonlinear Laser Scission of DNA, Sov. Phys. Doklady 272(1), 217-220 (1983).
21. L.Z.Benimetskaya, V.V.Vernikovsky, A.L.Kozionov, S.Yu.Novozhilov, and M.I.Stockman, Study of Scission and Cross-Links in DNA Induced by Laser Irradiation with Denaturation-Renaturation Method, Proceedings of the Vavilov Conference on Nonlinear Optics, Novosibirsk, 1982, p.196-200.
20. Yu.E.Nesterikhin, S.G.Rautian, and M.I.Stockman, Selective Laser Action on Macromolecules, Sov. Physics Uspekhy 138(2), 321-324 (1982).
19. S.G.Rautian, and M.I.Stockman, Selective Laser Photomodification of Macromolecules: Scission of DNA and Other Phenomena, Proceedings of the Vavilov Conference on Nonlinear Optics, Novosibirsk,1982, p.148-161.
18. L.Z.Benimetskaya, V.V.Vernikovsky, A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Study of the Phenomenon of the Nonlinear Laser Scission of DNA Using the Effect of Light-Induced Diffusion, Proceedings of the Vavilov Conference on NonlinearOptics, Novosibirsk, 1982, p.190-195.
17. G.D.Rodionov, M.T.Khodonov,B.M.Stockman, and M.I.Stockman, Efficient Algorithm of Nonlinear GlobalMinimization with Constraints, Autometria #2, 17-24 (1981).
16. A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Light-Induced Diffusion of DNA: Theory and Computer-Assisted Experiment, Autometria #6, 73-86 (1981).
15. M.I.Stockman, Effect of Synchronization of Photons, JETP Lett. 31(2), 84-88 (1980).
14. M.I.Stockman, Spectroscopy of the Scattered Light in Biology and Biophysics, Autometria, 1980, #1,310-311.
13. A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Light-Induced Diffusion of DNA in Solutions Induced by Laser Scission, Pis'ma ZhETF 31(10), 606-610 (1980) [Translation: JETP Lett. 31(10), 570-573 (1980)].
12. A.I.Parkhomenko, S.G.Rautian,and M.I.Stockman, Nonlinear Laser Photomodification of Macromolecules: Cleavage of DNA, Sov. Phys. Doklady 250(1), 225-228 (1980).
11. V.I.Dudarev, A.I.Parkhomenko, V.P.Safonov, and M.I.Stockman, Nonlinear Photoprocesses in Solutions of Coumarine-4, Sov. Phys. Technical Phys. 50(7), 1497-1503(1980).
10. M.I.Stockman, Effect of Photon Synchronization in Intensity Interference: New Effect and New Possibilities, Phys. Lett. A 80(2,3), 146-148 (1980).
9. M.I.Stockman, and
A.I.Parkhomenko, Nonlinear Laser Photoscission of DNA,
Proceedings of the Vavilov Conference onNonlinear Optics,
8. M.I.Stockman, Nonlinear Two-Quantum Modification of Macromolecules: Possibility and Applications, Phys.Lett. A 76(2), 191-193 (1980).
7. M.I.Stockman, Optical Correlation Method to Study Interaction of Neurons in Neuronal Networks, Biophysics 25(4),764 (1980).
6. E.V.Khizhnyak, Yu.P.Chernov, and M.I.Stockman, Mathematical Simulation of Perturbations of Electric Field in Conducting Media, Autometria #1, 55-61 (1977).
5. M.I.Stockman, Hypothesis on Quantum Mechanism of the Active Transport, Biophysics 22(3),448-451 (1977).
4. M.I.Stockman, Theory of Nonadiabatic Effects in the Transition Probabilities in Even-Even Deformed Nuclei, Sov. Phys. Nucl. Phys. 22(2), 479-489 (1975).
3. M.I. Stockman, Vortices andFast Electrons in HeII: Possible Experiments and Applications, Phys.Lett. A 46(1), 73-76 (1973).
2. V.G.Zelevinsky, and M.I.Stockman .The Moment of Inertia in the Microscopic Theory of Nuclear Rotation, Sov. Phys. Izvestiya 36(12), 2577-2584 (1972).
1. M.I.Stockman, and V.G.Zelevinsky, On the Phenomenological Description of the Nuclear Rotational States, Phys. Lett. B 41(1), 19-23 (1972).