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Attosecond strong-field interferometry in graphene: Chirality, singularity, and Berry phase
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We propose an interferometry in graphene’s reciprocal space without a magnetic field, employing strong
ultrafast circularly polarized optical pulses. The reciprocal space interferograms contain information on the
electronic spectra and topological properties of graphene and on the waveform and circular polarization of the
excitation optical pulses. These can be measured using angle-resolved photoemission spectroscopy (ARPES)
with attosecond ultraviolet pulses. The predicted effects provide unique opportunities in fundamental studies of
two-dimensional topological materials and in applications to future petahertz light-wave-driven electronics.

DOI: 10.1103/PhysRevB.93.155434

I. INTRODUCTION

Graphene is a two-dimensional material with remarkable
electronic properties: it is a gapless semiconductor (or,
semimetal) where the valence band (VB) and conduction
band (CB) touch each other at the Dirac points (K and K ′
points) in the reciprocal space where electrons and holes
behave as massless fermions [1–3]. Electron band structure
in graphene’s reciprocal space is determined by its spatial and
time-reversal symmetry. It is chiral, topologically nontrivial,
and characterized by a nonzero Berry phase of ±π [1–6]
acquired by the electronic wave function when circling around
a K or K ′ point—see Fig. 1(a). This topologically nontrivial
chiral structure of graphene manifest itself in the quantum Hall
effect [1–3] and in angle-resolved photoemission spectroscopy
(ARPES) [7]. The Berry phase has been observed in an optical-
lattice quantum simulation of graphene in the presence of a
magnetic field gradient (using the Stern-Gerlach effect) [6].
Similar measurements in natural graphene would require
magnetic fields too high to be realistic. Note that the area
of the present study is ultrafast electron kinetics in unbiased
graphene and not graphene plasmons [8] that are absent in this
case.

In this paper, we propose attosecond strong-field interfer-
ometry in graphene, which, without involvement of magnetic
fields, reveals its chiral nature related to the Berry phase, and
fundamentally allows measurement of the dynamic phase. It
contains rich information about electronic structure, attosec-
ond excitation dynamics, and, potentially, ultrafast relaxation
in graphene. The idea of such strong-field interferometry is
presented in Figs. 1(b)–1(f).

The quantum motion of an electron in the reciprocal
space is known to be deterministic as expressed by the
Bloch acceleration theorem, �k(t) = �k0 + eA(t), where the
vector potential is defined as A(t) = − ∫ t

−∞ F(t ′)dt ′, k(t) is
the electron crystal momentum at time t , k0 is the crystal
momentum at the initial time, e is unit charge, and F(t)
is the optical electric field on graphene. We used optical
pulses with a given number of oscillations defined in terms
of Hermite polynomials [see Sec. II]. Each oscillation is
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circularly polarized. For an one-optical-oscillation ultrashort
circularly polarized pulse, an example of the vector potential
is displayed in Fig. 1(b) by the dashed red line. Assum-
ing vacuum wavelength of 1500 nm, the optical period is
T = 5 fs.

We consider laser pulses shorter than the electron scattering
time ∼10–100 fs [13–18]. Hence the electron dynamics is
coherent and can be described by time-dependent Schrödinger
equation (see Sec. II). We solve numerically the time-
dependent Schrödinger equation in the basis of the Houston
functions [19]. Time-dependent expansion coefficients, βvk0 (t)
and βck0 (t), of the electron wave function in this basis
determine the amplitudes for an electron with initial wave
vector k0 to be in VB and CB, respectively. In graphene,
the dipole matrix element D(k) between the VB and CB is
singularly enhanced in the vicinity of the Dirac points [20],
where most of transitions VB ↔ CB occur.

The set of the initial points for electron trajectories k(t),
which pass through the K point, is a curve mirror-symmetric
to the trajectory, as shown by the dark blue lines in Figs. 1(b)–
1(d). This curve is a separatrix: electron trajectories that
originate inside the separatrix encircle the K-point and thus
accumulate the Berry phase [Fig. 1(c)], while those outside do
not [Fig. 1(d)]. Due to the dipole singularity mentioned above
in the previous paragraph, after an optical period, when the
electron crystal momentum returns back to k0, the electrons
excited to the VB will be situated in the vicinity of the
separatrix. In the real-space Aharonov-Bohm effect [21], the
incident electrons diffract and propagate to the observation
point by two pathways around the magnetic flux region. In
our case, there is no diffraction in the reciprocal space: the
final electron momentum k is the same as the original one, k0.
Thus a single-oscillation pulse does not create any interference
fringes in the reciprocal space—cf. Fig. 2(a) to be discussed
in detail later.

To have the desired interference of electrons, consider a
pulse causing two passages in the K-point vicinity as schemat-
ically shown in Figs. 1(e) and 1(f). This pulse contains two
periods with opposite circular polarizations, counter-rotating
with respect to each other—an example of the optical fields is
shown in the inset in Fig. 3. Ultrashort pulses containing op-
posite circular polarizations were synthesized for applications
to generalized double optical gating (GDOG) [22].

In the case of counter-rotating polarizations, there are two
pathways leading to the final momentum k0: (i) As shown
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FIG. 1. Schematics of graphene electronic spectrum, reciprocal
space trajectories, and separatrices. (a) Electron spectrum of graphene
in the first Brillouin zone in tight binding model [9–12]. The six Dirac
points are indicated as K and K ′, and the directions of coordinate
axes are shown. (b)–(d) For a circularly polarized single-oscillation
pulse, the separatrix is shown by solid blue lines and the electron
trajectories starting at k0 points are depicted by dashed red lines.
For (b), (c), and (d), respectively, the k0 point is on, inside, and
outside of the separatrix. (e) and (f) Graphene as a self-referenced
interferometer. The optical pulse contains two periods with opposite
circularity: the first period, with some amplitude F0, has the field
rotating clockwise, and the second period with amplitude 0.75F0 has
the field rotating counterclockwise. The electron motion in the VB is
denoted by solid lines and in the CB by dashed lines. The red color
highlights the segments of the trajectories where the electron motion
for (e) and (f) occurs in different bands. (g) and (h) differ from (e)
and (f) by the opposite circularity of the second period.

in Fig. 1(e), an electron starts at k0, moves to the K-point,
where it undergoes a transition VB → CB, and then returns
to k0 and travels the second cycle entirely within the CB;
(ii) Illustrated by Fig. 1(f), the electron dwells in the VB
during the entire first cycle and undergoes the VB → CB
transition in the vicinity of the K-point during the second cycle
returning eventually to the k0 point. These two pathways are
indistinguishable and their corresponding amplitudes, A1 and
A2, interfere: the resulting population probability contains an
interference term, 2Re(A1A

∗
2) = 2|A1A2| cos (ϕ1 − ϕ2). Note

that the phase difference ϕ1 − ϕ2 between the two amplitudes,
A1 and A2, accumulates only along the portions of their

FIG. 2. Graphene interferograms in reciprocal space for the
vicinity of the K point for different moments of time t . (a)–(c) For
the instances of time t indicated, distributions of the CB population,
|βc(k,t)|2, and (d)–(f) real part of the CB excitation amplitude,
Reβc(k,t). (a) The population distribution at the end of the first
optical oscillations, t = 2.5 fs (the pulse start is set at t = −2.5 fs).
The separatrices for the two oscillations are shown by blue lines and
the directions of the optical electric field rotations are indicated by
arrows. (b) The same as in (a) but for time t = 4.5 fs, i.e., in the initial
stage of the second (counterclockwise) oscillation. (c) The same as
in panel (b) but after the second oscillation is completed. (d)–(f) The
same as (a)–(c) but for the CB excitation amplitude. The green arrows
indicated the region where the bifurcations of the interference fringes
occur.

reciprocal space trajectories denoted by red in Figs. 1(e)-(f).
This interferometer does not need an external reference source
and, therefore, is self-referenced.

II. MODEL AND MAIN EQUATIONS

Consider ultrashort optical pulse with circular polarization.
We start with a pulse consisting of two optical oscillation
periods. These two periods may differ by the field amplitudes
and directions of circular polarizations. We consider two cases:
(i) the two optical periods have the same (say, left) circular
polarization and (ii) the two optical periods have opposite
(say, left and right) circular polarizations.
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FIG. 3. Residual CB population in graphene after a two-
oscillations pulse where the first optical cycle is left circularly-
polarized with amplitude F0 = 0.5 V/Å, and the second cycle is right
circularly-polarized with amplitude 0.75F0 (this wave form is shown
in the inset). The separatrices are indicated by blue lines superimposed
on the distributions.

Consider for certainty a graphene monolayer positioned
in the xy plane with the excitation light wave incident in
the z direction. The pulse field is defined by its field vector
(considered to be uniform inside graphene), F = {Fx,Fy,0},
which is parametrized in the form (derived from Hermite
polynomials of the first and second order) as

Fx(t) = F0[−e−u2
(1 − 2u2) ∓ αe−(u−u0)2

(1 − 2(u − u0)2)],

(1)

Fy(t) = 2F0
[
ue−u2 + α(u − u0)e−(u−u0)2]

. (2)

Here, ∓ determines the circularities (the upper sign is for
identical and the lower for opposite circular polarizations);
F0 is the amplitude of the first optical period, and αF0 is the
amplitude of the second optical period; u = t/τ , u0 = t0/τ ,
where τ is approximately quarter optical oscillation period,
and t0 is approximately a half pulse length. In specific
computations, we set τ = 1 fs and t0= 5 fs.

The Hamiltonian of an electron in graphene in the field of
the optical pulse has the form

H = H0 + eF(t)r, (3)

where H0 is the field-free electron Hamiltonian, and r = (x,y)
is a 2D radius vector in the plane of graphene. To describe
the conduction and valence bands of graphene, we employ
H0 in the nearest-neighbor tight-binding model [9–12]. In the
reciprocal space, the Hamiltonian, H0, is a 2 × 2 matrix of the
form [9,10]

H0 =
(

0 γf (k)
γf ∗(k) 0

)
, (4)

where γ = −3.03 eV is the hopping integral and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
. (5)

The energy spectrum of Hamiltonian H0 consists of the CB
(π∗ or antibonding band) and the VB (π or bonding band)
with energy dispersion Ec(k) = −γ |f (k)| (CB) and Ev(k) =
γ |f (k)| (VB). The corresponding wave functions for the VB
(v) and the CB (c) are

�
(c)
k (r) = eikr

√
2

(
1

e−iφk

)
(6)

and

�
(v)
k (r) = eikr

√
2

( −1
e−iφk

)
, (7)

where f (k) = |f (k)|eiφk . The wave functions �
(c)
k and �

(v)
k

have two components belonging to sublattices A and B,
respectively.

When the duration of the laser pulse is less than the
characteristic electron scattering time, which is on the order of
∼10–100 fs [13–18], the electron dynamics in external electric
field of the optical pulse is coherent and can be described by
the time dependent Schrödinger equation

i�
d�

dt
= H�, (8)

where the Hamiltonian (3) has explicit time dependence.
The electric field of the optical pulse generates both

interband and intraband electron dynamics. The interband
dynamics introduces a coupling of the states of the CB and
VB and results in redistribution of electrons between the two
bands.

It is convenient to describe the intraband dynamics in the
reciprocal space where it is described by the Bloch acceleration
theorem [23],

�
dk
dt

= eF(t). (9)

This acceleration theorem is universal and does not depend on
the dispersion law. Therefore the intraband electron dynamics
is the same for both the VB and CB. For an electron with
initial momentum q, the temporal dynamics is described by
the time-dependent wave vector, kT (q,t), which is given by
the solution of Eq. (9),

kT (q,t) = q + e

�

∫ t

−∞
F(t1)dt1. (10)

The corresponding wave functions in the real space are the
Houston functions, [19] 


(H )
αq (r,t),


(H )
αq (r,t) = �

(α)
kT (q,t)(r)e− i

�

∫ t

−∞dt1Eα [kT (q,t1)], (11)

where α = v (for VB) or α = c (for CB).
Using the Houston functions as the basis, we express the

general solution of the time-dependent Schrödinger equa-
tion (8) in the following form:

�q(r,t) =
∑

α=v,c

βαq(t)
(H )
αq (r,t). (12)
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The solution (12) is labeled by initial electron wave vector
(crystal momentum) q. Due to the universal electron dynamics
in the reciprocal space, the states that belong to different bands
(VB and CB) but have the same initial crystal momentum q,
will have the same crystal momentum kT (q,t) at all moments
of time t . Since the interband dipole matrix element, which
determines the coupling of the VB and CB states in an external
electric field, is diagonal in the reciprocal space, the states
with different crystal momenta q are not coupled by the pulse
field. As a result in Eq. (12), for each value of initial wave
vector q, we need to find only two time-dependent expansion
coefficients βvq(t) and βcq(t). Such decoupling of the states
with different values of q is a property of coherent dynamics.
For incoherent dynamics, electron scattering couples states
with different q, and the dynamics may be described by density
matrix formalism.

The expansion coefficients satisfy the following system of
differential equations:

dβcq(t)

dt
= −i

F(t)Qq(t)

�
βvq(t), (13)

dβvq(t)

dt
= −i

F(t)Q∗
q(t)

�
βcq(t), (14)

where the vector function Qq(t) is proportional to the interband
dipole matrix element

Qq(t) = D[kT (q,t)]e− i
�

∫ t

−∞dt1{Ec[kT (q,t1)]−Ev [kT (q,t1)]}, (15)

where D(k) = {Dx(k),Dy(k)} is the dipole matrix element
between the states of the VB and CB with wave vector k,
i.e.,

D(k) = 〈
�

(c)
k

∣∣er
∣∣�(v)

k

〉
. (16)

Substituting the VB and CB wave functions (6) and (7) into
Eq. (16), we obtain the following expressions for the interband
dipole matrix elements

Dx(k) = ea

2
√

3

1 + cos
( aky

2

)[
cos

( 3akx

2
√

3

) − 2 cos
( aky

2

)]
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)]
(17)

and

Dy(k) = ea

2

sin
( aky

2

)
sin

( 3akx

2
√

3

)
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)] .

(18)

The system of Eqs. (13) and (14) describes the interband
electron dynamics determining mixing of the VB and CB
states in the electric field of the pulse. There are two solutions
of the system (13) and (14), which correspond to two initial
conditions: (βvq,βcq) = (1,0) and (βvq,βcq) = (0,1). These
solutions determine the evolution of the states, which are
initially in the VB and CB, respectively.

For undoped graphene, all states of the VB are occupied
and all states of the CB are empty. For an electron, which is
initially in the VB, the mixing of the states of different bands
is characterized by the time-dependent excitation probability,

|βcq(t)|2. We can also define the time-dependent total occupa-
tion of the conduction band by the following expression:

NCB(t) =
∑

q

|βcq(t)|2, (19)

where the sum is over the first Brillouin zone.

III. RESULTS AND DISCUSSION

We use theory and parameters described above in Sec. II.
We solve the Schrödinger numerically in the representation of
the Houston functions. The results obtained are presented and
discussed below in this section.

This process of the electron interferogram formation in the
first Brillouin zone for a pulse containing two optical periods
with opposite circularities is illustrated in Fig. 2. After the
first full cycle (for t = 2.5 fs), the CB electron distribution
density, |βc(k,t)|2, is shown in panel (a), and the real part
of the CB population amplitude, Reβc(k,t), is displayed in
panel (d). The first optical oscillation does populate the CB
along the corresponding separatrix but does not produce any
interference fringes [panel (a)], while the population amplitude
does show both the fringes and the Berry phase discontinuity
by π [panel (d)].

During the second optical cycle, whose field amplitude,
αF0, is 75% of the first cycle amplitude, F0 (α = 0.75),
there is gradual formation of the interference fringes in
the direction of the electric field rotation along the second
(smaller) separatrix [Fig. 2(b)], which is fully completed at
the pulse end at t = 7.5 fs [Fig. 2(c)]. The interference fringes
have characteristic bifurcations in the vicinity of the second
separatrix as marked by the green arrows. The interferogram
in panel (f) shows that at the positions of these bifurcations
the dynamic phase changes very rapidly. Note that the Berry
phases accumulated in the first and second quantum pathways
to the final state [shown in Figs. 1(e) and 1(f)] are equal
and, therefore, cancel out and do not show themselves as
any discontinuities in the population interferograms [panel
(c)]. These population interferograms [panels (a)–(c)] can, in
principle, be directly observed by femtosecond ARPES.

The resulting reciprocal-space interferogram (the distribu-
tion of the CB population) in the extended Brillouin zone
picture is displayed in Fig. 3. This distribution is highly
chiral: there is pronounced right-left asymmetry determined
by the chirality of the optical pulse (changing the circularity
to the opposite would cause the distribution to be mirror-
reflected in the yz plane—see Fig. 4 and its discussion). The
interferograms at both the K and K ′ points are different, which
reflects the intrinsic graphene chirality related to the Berry
phase of graphene’s reciprocal space.

The origin of this chirality can be understood from Figs. 1(e)
and 1(f). When the second (counter-clockwise) oscillation
begins at the initial point k0, which is close to the K point and
is situated to the right of it, as shown in panel (e), the interfering
portions of the trajectories (shown by the red) are short. The
corresponding fringes are seen in Fig. 2(b) in the lower right
part of the interferogram. In this case, time between the first and
second passage of the K point is minimal, so any dephasing is
small. Hence the phase increases fastest along the separatrix,
which means that the fringes are normal to the separatrix, as
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FIG. 4. Same as Fig. 3 but with for a pulse with opposite chirality.
The first oscillation has its electric field rotating counter-clockwise,
and the second oscillation does clockwise.

seen in Figs. 2(c) and 3. For the k0 points farther along the
separatrix from the K-point, the time between the first and
second passage of the K point increases up to the optical
period, T . For such short pulses, the spectral width is large,
�ω ∼ T −1. This large spectral width translates into a very fast
collisionless dephasing (Landau damping [24]) whose time
is ∼�ω−1 ∼ T . Thus, at the left part of the interferogram,
corresponding to longer times, there is little phase-difference
along the separatrices, and the fringes tend to be parallel to
the separatrices. To verify that the bifurcations originate from
the second oscillation being of smaller amplitude, we have
performed calculations for a pulse, which contains two periods
with equal amplitudes; the same high degree of chirality is
present but the bifurcations are absent (results not shown).

Figure 4 below demonstrates properties of exact spatial
symmetry of graphene, namely, its symmetry with respect to
reflection in the yz plane. This reflection leaves the system
invariant but changes the sense of rotation of the field. As a
result the interferogram in Fig. 4 is mirror-reflected in the yz

axis with respect to that in Fig. 3.
In a sharp contrast to Figs. 3 and 4, a similar pulse consisting

of two subpulses with identical circularity does not cause
any interferogram chirality—see Fig. 5. The reason is that
in this case the interfering segments of trajectories, shown
in Figs. 1(g) and 1(h) by red lines, are extended over the
entire optical period. This leads to two consequences. First,
the time between the two interfering passages through the K

point, in this case, is exactly the period T , there is strong
dephasing, which causes the fringes to be mostly parallel to
the separatrix—cf. Fig. 5. Second, because the field amplitudes
for the two oscillations are equal, the amplitudes for the
two pathways are complex-conjugated, A1 = A∗

2, causing
the distributions to be achiral (symmetric with respect to
the reflection in the yz plane). However, the local distributions
for the K and K ′ points are still different, which is due to
the internal chirality of graphene’s reciprocal space (Berry
phase ±π ).

tFx

Fy
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K K

FIG. 5. The same as in Fig. 3 but for an optical pulse where the two
optical periods have the same amplitudes and circular polarizations.

Though pulses with two optical oscillations are well within
the state-of-the-art—see, e.g., Ref. [25], circularly polarized
pulses with two optical oscillations, to our best knowledge,
have not yet been synthesized and published. Therefore we
present in Fig. 6 a CB electron distribution caused by a pulse
similar to those used in GDOG [22], which contains three
optical oscillations with left circular polarization followed by
three oscillations with right polarization—see inset in Fig. 6.
Also in this case, the CB electron population distribution is
highly chiral and different for the K versus K ′ points, which
reflects the chirality of both the optical pulse and graphene. The
resulting interferograms are, understandably, more complex
that for the previous cases of two optical oscillations.

tE x

Ey
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K K

FIG. 6. Similar to Fig. 3 but for a pulse where three oscillations
with left circular polarization followed by three right circularly-
polarized oscillations.
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IV. CONCLUSIONS

In conclusion, we have proposed a self-referenced in-
terferometry in graphene in the reciprocal space. A strong
(∼0.5 V/Å) ultrashort (∼5 fs) optical pulse is populating
the CB on subcycle times (∼100 as). Circular polarization
of the pulse causes electron to circle in the reciprocal space
accumulating the dynamic phase along this closed trajectory.
Circling around a Dirac (K or K ′) point adds also the Berry
phase of π or −π . The electron VB ↔ CB transitions occur
predominantly in the vicinity of the Dirac point. The quantum
excitation amplitudes corresponding to different optical cycles
interfere, and their fringes reflect both the dynamic and Berry
phases. The fringes of population are due to the dynamic phase
only; they are fundamentally observable using femtosecond
ARPES. These fringes carry rich information of the electronic
spectra and interband dynamics near the Dirac points and the
chirality of the pulse. These interference fringes of electron
population are identical separately for the three K points and
for the three K ′ points and different between the K points
versus the K ′ points. This reflects the local chirality in the
reciprocal space related to the topological Berry curvature,
flux, and phase.

The previous work on Berry phase interferometry in the
reciprocal space [6] was done in a magnetic field gradient. In
a sharp contrast, we do not employ a magnetic field (which
for graphene would have been too high to be realistic). Our
interfering amplitudes are those for an electron passing in the
vicinity of a Dirac point at different times, i.e., the “slits”
of our interferometer are separated in time, not in space
(real or reciprocal). The interference fringes are separated
by some crystal momentum �k, which is, on the order of
magnitude, the width of the region around a Dirac point where
the interband transitions take place—this can be estimated
from Fig. 2(a) as �k ∼ 0.1Å−1. Correspondingly, time interval
�t between formation of the fringes can be estimated from
the Bloch acceleration theorem as �t ∼ ��k/(eF0) ∼ 150
as—in qualitative accord with kinetics in Figs. 2(b) and 2(c).
This dynamics of the interferogram formation provides an
attosecond “clock” that may be useful in studying the fastest
electron dynamics in nature, which takes place in graphene
subjected to strong optical fields.

Fundamentally, the predicted attosecond kinetics in the re-
ciprocal space can be visualized using ARPES with attosecond
ultraviolet or XUV pulses, which are realistic at the present
state of the art [26,27]. Note that in our case the goal is
to measure accurately only the momentum distribution of

electrons in the CB as a function of time but not the full elec-
tronic dispersion relation as in conventional continuous-wave
ARPES. Therefore only the momentum distribution should be
measured accurately; in contrast, the energy resolution should
only be sufficient to distinguish electrons coming from the
CB versus those from the VB. Because the phenomena of
interest encompass a significant part of the Brillouin zone, this
sufficient energy resolution is in the range from ∼0.1 eV, which
has experimentally been achieved with optical attosecond
pulses (pulse duration ∼300 as) [27] to ∼0.5 eV obtained
with XUV attosecond pulses (pulse duration ∼100 as) [26].

Another possibility is to use ARPES to measure the
resulting electron interferogram after the pulse. This will
persists during a period limited by the electron collision times
in the CB, which has been found to be ∼10 fs [16]. This
would further dramatically relax requirements to temporal
resolution and, consequently, improve the energy resolution
needed to study the vicinity of the Dirac points. Though
the sensitivity of the electron interferogram in graphene to
the electron collisions, i.e., electron momentum relaxation, is
potentially a limiting factor, it also has “silver lining”: it can be
used as a clock to monitor this ultrafast relaxation dynamics
with unprecedented speed. This is defined by ∼100 as time
of the fringe formation and ∼100–500 as potential temporal
resolution of ultrafast ARPES (see the previous paragraph).

The proposed graphene interferometry provides an ap-
proach to extract information about both electronic and
topological properties of graphene and about the strong
ultrafast circularly-polarized optical pulses with potentially
attosecond temporal resolution. These may provide unique
opportunities for attosecond metrology and light-wave driven
nanoelectronics.
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