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Abstract: A review of quantum and gain nanoplasmonics is given. This
includes spaser and plasmonic gain, amplification, and loss compensation.
This Chapter reviews both fundamental theoretical ideas in quantum
and gain nanoplasmonics and selected experimental developments. It is
designed both for specialists in the field and general physics readership.

1. Introduction to spasers and spasing

Not just a promise anymore [1], nanoplasmonics has delivered a number of important appli-
cations: ultrasensing [2], scanning near-field optical microscopy [3, 4], Surface Plasmon (SP)-
enhanced photodetectors [5], thermally assisted magnetic recording [6], generation of extreme
uv [7], biomedical tests [2, 8], SP-assisted thermal cancer treatment [9], plasmonic enhanced
generation of extreme ultraviolet (EUV) pulses [7] and extreme ultraviolet to soft x-ray (XUV)
pulses [10], and many others — see also Refs. [11,12].

To continue its vigorous development, nanoplasmonics needs an active device — near-field
generator and amplifier of nanolocalized optical fields, which has until recently been absent. A
nanoscale amplifier in microelectronics is the metal-oxide-semiconductor field effect transistor
(MOSEFET) [13, 14], which has enabled all contemporary digital electronics, including com-
puters and communications and enabled the present day technology as we know it. However,
the MOSFET is limited by frequency and bandwidth to < 100 GHz, which is already a limit-
ing factor in further technological development. Another limitation of the MOSFET is its high
sensitivity to temperature, electric fields, and ionizing radiation, which limits its use in extreme
environmental conditions and nuclear technology and warfare.

An active element of nanoplasmonics is the spaser (Surface Plasmon Amplification by Stim-
ulated Emission of Radiation), which was proposed [15, 16] as a nanoscale quantum generator
of nanolocalized coherent and intense optical fields. The idea of spaser has been further devel-
oped theoretically [17-26]. Spaser effect has recently been observed experimentally [27]. Also
a number of surface plasmon polariton (SPP) spasers (also called nanolasers) have been exper-
imentally observed [28-33], see also Ref. [34—-37]. Closely related to the spaser are nanolasers
built on deep sub-wavelength metal nanocavities [38,39].
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Fig. 1. Schematic of the spaser as originally proposed in Ref. [15]. The resonator of the
spaser is a metal nanoparticle shown as a gold V-shape. It is covered by the gain medium
depicted as nanocrystal quantum dots. This active medium is supported by a neutral sub-
strate.

2. Spaser fundamentals

Spaser is a nanoplasmonic counterpart of laser [15,17]: it is a quantum generator and nanoam-
plifier where photons as the participating quanta are replaced by SPs. Spaser consists of a metal
nanoparticle, which plays a role of the laser cavity (resonator), and the gain medium. Figure 1
schematically illustrates geometry of a spaser as introduced in the original article [15], which
contains a V-shaped metal nanoparticle surrounded by a layer of semiconductor nanocrystal
quantum dots.

The laser has two principal elements: resonator (or cavity) that supports photonic mode(s)
and the gain (or active) medium that is population-inverted and supplies energy to the lasing
mode(s). An inherent limitation of the laser is that the size of the laser cavity in the propagation
direction is at least half wavelength and practically more than that even for the smallest lasers
developed [28,29,40].

In a true spaser [15, 18], this limitation is overcome. The spasing modes are surface plasmons
(SPs) whose localization length is on the nanoscale [41] and is only limited by the minimum
inhomogeneity scale of the plasmonic metal and the nonlocality radius [42] /,; ~ 1 nm. This
nonlocality length is the distance that an electron with the Fermi velocity vF moves in space
during a characteristic period of the optical field,

b ~ve /@ ~ 1 nm (1

where @ is optical frequency, and the estimate is shown for the optical spectral region. So, the
spaser is truly nanoscopic — its minimum total size can be just a few nanometers.

The resonator of a spaser can be any plasmonic metal nanoparticle whose total size R is much
less than the wavelength A and whose metal thickness is between [,; and /;, which supports a
SP mode with required frequency w,. Here [ is the skin depth
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where 4 = A/(27) = @/c is the reduced vacuum wavelength, &, is the dielectric function (or,
permittivity) of the metal, and &; is that of the embedding dielectric. For for single-valence
plasmonic metals (silver, gold, copper, alkaline metals) /; = 25 nm in the entire optical region.
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Fig. 2. Schematic of spaser geometry, local fields, and fundamental processes leading to
spasing. Adapted from Ref. [18]. (a) Nanoshell geometry and the local optical field dis-
tribution for one SP in an axially-symmetric dipole mode. The nanoshell has aspect ratio
1 = 0.95. The local field magnitude is color-coded by the scale bar in the right-hand side
of the panel. (b) The same as (a) but for a quadrupole mode. (c) Schematic of a nanoshell
spaser where the gain medium is outside of the shell, on the background of the dipole-
mode field. (d) The same as (c) but for the gain medium inside the shell. (e) Schematic
of the spasing process. The gain medium is excited and population-inverted by an external
source, as depicted by the black arrow, which produces electron-hole pairs in it. These pairs
relax, as shown by the green arrow, to form the excitons. The excitons undergo decay to the
ground state emitting SPs into the nanoshell. The plasmonic oscillations of the nanoshell
stimulates this emission, supplying the feedback for the spaser action.



This metal nanoparticle should be surrounded by the gain medium that overlaps with the
spasing SP eigenmode spatially and whose emission line overlaps with this eigenmode spec-
trally [15]. As an example, we consider in more detail a model of a nanoshell spaser [17,18,43],
which is illustrated in Fig. 2. Panel (a) shows a silver nanoshell carrying a single SP (plasmon
population number N, = 1) in the dipole eigenmode. It is characterized by a uniform field
inside the core and hot spots at the poles outside the shell with the maximum field reaching
~ 10° V/cm. Similarly, Fig. 2 (b) shows the quadrupole mode in the same nanoshell. In this
case, the mode electric field is non-uniform, exhibiting hot spots of ~ 1.5 x 10° V/cm of the
modal electric field at the poles. These high values of the modal fields, which are related to the
small modal volume, is the underlying physical reason for a very strong feedback in the spaser.
Under our conditions, the electromagnetic retardation within the spaser volume can be safely
neglected. Also, the radiation of such a spaser is a weak effect: the decay rate of plasmonic
eigenmodes is dominated by the internal loss in the metal. Therefore, it is sufficient to consider
only quasistatic eigenmodes [41,44] and not their full electrodynamic counterparts [45].

For the sake of numerical illustrations of our theory, we will use the dipole eigenmode [Fig. 2
(a)]. There are two basic ways to place the gain medium: (i) outside the nanoshell, as shown in
panel (c), and (ii) in the core, as in panel (d), which was originally proposed in Ref. [43]. As we
have verified, these two designs lead to comparable characteristics of the spaser. However, the
placement of the gain medium inside the core illustrated in Fig. 2 (d) has a significant advantage
because the hot spots of the local field are not covered by the gain medium and are sterically
available for applications.

Note that any /-multipole mode of a spherical particle is, indeed, 2/ 4 1-times degenerate.
This may make the spasing mode to be polarization unstable, like in lasers without polarizing
elements. In reality, the polarization may be clamped and become stable due to deviations
from the perfect spherical symmetry, which exist naturally or can be introduced deliberately.
More practical shape for a spaser may be a nanorod [24], which has a mode with the stable
polarization along the major axis. However, a nanorod is a more complicated geometry for
theoretical treatment.

The level diagram of the spaser gain medium and the plasmonic metal nanoparticle is dis-
played in Fig. 2 (e) along with a schematic of the relevant energy transitions in the system.
The gain medium chromophores may be semiconductor nanocrystal quantum dots [15,46], dye
molecules [47, 48], rare-earth ions [43], or electron-hole excitations of an unstructured semi-
conductor [28, 40]. For certainty, we will use a semiconductor-science language of electrons
and holes in quantum dots.

The pump excites electron-hole pairs in the chromophores [Fig. 2 (e)], as indicated by the
vertical black arrow, which relax to form excitons. The excitons constitute the two-level systems
that are the donors of energy for the SP emission into the spasing mode. In vacuum, the excitons
would recombine emitting photons. However, in the spaser geometry, the photoemission is
strongly quenched due to the resonance energy transfer to the SP modes, as indicated by the
red arrows in the panel. The probability of the radiativeless energy transfer to the SPs relative
to that of the radiative decay (photon emission) is given by the so-called Purcell factor
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where R is a characteristic size of the spaser metal core and Q is the plasmonic quality factor
[12], and Q ~ 100 for a good plasmonic metal such as silver. Thus, this radiativeless energy
transfer to the spaser mode is the dominant process whose probability is by orders of magnitude

greater than that of the free-space (far-field) emission.
The plasmons already in the spaser mode create the high local fields that excite the gain
medium and stimulate more emission to this mode, which is the feedback mechanism. If this
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feedback is strong enough, and the life time of the spaser SP mode is long enough, then an
instability develops leading to the avalanche of the SP emission in the spasing mode and spon-
taneous symmetry breaking, establishing the phase coherence of the spasing state. Thus the
establishment of spasing is a non-equilibrium phase transition, as in the physics of lasers.

2.1. Brief overview of latest progress in spasers

After the original theoretical proposal and prediction of the spaser [15], there has been an
active development in this field, both theoretical [17-26] and experimental [27-33]; see also
Refs. [11, 12]. There has also been a US patent issued on spaser [16].

Among theoretical developments, a nanolens spaser has been proposed [49], which possesses
a nanofocus (“the hottest spot”) of the local fields. In Refs. [15,49], the necessary condition of
spasing has been established on the basis of the perturbation theory.

There have been theories published describing the SPP spasers (or, “nanolasers” as some-
times they are called) phenomenologically, on the basis of classic linear electrodynamics by
considering the gain medium as a dielectric with a negative imaginary part of the permittiv-
ity, e.g., [43]. Very close fundamentally and technically are works on the loss compensation
in metamaterials [50-53]. Such linear-response approaches do not take into account the na-
ture of the spasing as a non-equilibrium phase transition, at the foundation of which is spon-
taneous symmetry breaking: establishing coherence with an arbitrary but sustained phase of
the SP quanta in the system [18]. Spaser is necessarily a deeply-nonlinear (nonperturbative)
phenomenon where the coherent SP field always saturates the gain medium, which eventually
brings about establishment of the stationary (or, continuous wave, CW) regime of the spas-
ing [18]. This leads to principal differences of the linear-response results from the microscopic
quantum-mechanical theory in the region of spasing, as we discuss below in conjunction with
Fig. 4.

There has also been a theoretical publication on a bowtie spaser (nanolaser) with electrical
pumping [54]. It is based on balance equations and only the CW spasing generation intensity
is described. Yet another theoretical development has been a proposal of the lasing spaser [55],
which is made of a plane array of spasers.

There have also been a theoretical proposal of a spaser (“nanolaser”) consisting of a metal
nanoparticle coupled to a single chromophore [56]. In this paper, a dipole-dipole interaction is
illegitimately used at very small distances » where it has a singularity (diverging for » — 0),
leading to a dramatically overestimated coupling with the SP mode. As a result, a completely
unphysical prediction of CW spasing due to single chromophore has been obtained [56]. In
contrast, our theory [18] is based on the full (exact) field of the spasing SP mode without the
dipole (or, any multipole) approximation. As our results of Sec. 3.4 below show, hundreds of
chromophores per metal nanoparticle are realistically requited for the spasing even under the
most favorable conditions.

There has been a vigorous experimental investigation of the spaser and the concepts of
spaser. Stimulated emission of SPPs has been observed in a proof-of-principle experiment us-
ing pumped dye molecules as an active (gain) medium [47]. There have also been later ex-
periments that demonstrated strong stimulated emission compensating a significant part of the
SPP loss [48,57-61]. As a step toward the lasing spaser, the first experimental demonstration
has been reported of a partial compensation of the Joule losses in a metallic photonic meta-
material using optically pumped PbS semiconductor quantum dots [46]. There have also been
experimental investigations reporting the stimulated emission effects of SPs in plasmonic metal
nanoparticles surrounded by gain media with dye molecules [62, 63]. The full loss compensa-
tion and amplification of the long-range SPPs at A = 882 nm in a gold nanostrip waveguide
with a dyes solution as a gain medium has been observed [64].



At the present time, there have been a considerable number of successful experimental obser-
vations of spasers and SPP spasers (also called nanolasers). An electrically-pumped nanolaser
with semiconductor gain medium has been demonstrated [28] where the lasing modes are SPPs
with a one-dimensional confinement to a ~ 50 nm size. A nanolaser with an optically-pumped
semiconductor gain medium and a hybrid semiconductor/metal (CdS/Ag) SPP waveguide has
been demonstrated with an extremely tight transverse (two-dimensional) mode confinement to
~ 10 nm size [29]. This has been followed by the development of a CdS/Ag nanolasers generat-
ing a visible single mode at a room temperature with a tight one-dimensional confinement (~ 20
nm) and a two-dimensional confinement in the plane of the structure to an area ~ 1 um? [30]. A
highly efficient SPP spaser in the communication range (A = 1.46 ym) with an optical pumping
based on a gold film and an InGaAs semiconductor quantum-well gain medium has recently
been reported [31]. Another nanolaser (spaser) has been reported based on gold as a plasmonic
metal and InGaN/GaN nanorods as gain medium [32]. This spaser generates in the green optical
range. Also a promising type of spasers has been introduced [33] based on distributed feedback
(DFB). The nanolaser demonstrated in Ref. [33] generates at room temperature and has lower
threshold than other spasers — see also the corresponding discussion in Sec. 4.6.

There has beeen an observation published of a nanoparticle spaser [27]. This spaser is a
chemically synthesized gold nanosphere of radius 7 nm surrounded by a dielectric shell of a 21
nm outer radius containing immobilized dye molecules. Under nanosecond optical pumping in
the absorption band of the dye, this spaser develops a relatively narrow-spectrum and intense
visible emission that exhibits a pronounced threshold in pumping intensity. The observed char-
acteristics of this spaser are in an excellent qualitative agreement and can be fully understood
on the basis of the corresponding theoretical results described below in Sec. 3.4.

3. Quantum Theory of Spaser
3.1. SP Eigenmodes and their Quantization

Here we will follow Refs. [41,65,66] to introduce SPs as eigenmodes and Ref. [15] to quantize
them. Assuming that a nanoplasmonic system is small enough, R < A,R < [;, we employ
the so-called quasistatic approximation where the Maxwell equations reduce to the continuity
equation for the electrostatic potential ¢(r),

d d
—&(r)=— =0. 4
S-e(r)5-0(r) @
The systems permittivity (dielectric function) varying in space and frequency-dependent is ex-
pressed as
®(r)]

s(w)
Here ©(r) is the so-called characteristic function of the nanosystem, which is equal to 1 when
r belongs to the metal and 0 otherwise. We have also introduced Bergman’s spectral parameter
[44],
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A classical-field SP eigenmode ¢, (r) is defined by the following generalized eigenproblem,
which is obtained from Eq. (4) by substituting Egs. (5) and (6),

0 0 2?2
59(1')5%(1')*5:1@ Pu(r) =0, 7

(6)

where ), is the corresponding eigenfrequency, and s, = s(@,) is the corresponding eigenvalue.



To be able to carry out the quantization procedure, we must neglect losses, i.e., consider
a purely Hamiltonian system. This requires thatwe neglect Imeg,,, which we do only in this
subsection. Then the eigenvalues s, and corresponding SP wave functions ¢,, as defined by
Eq. (7), are all real. Note that for good metals in the plasmonic region, Imég,, < |Reg,]|, cf.
Ref. [12], so this procedure is meaningful.

The eigenfunctions ¢, (r) satisfy the homogeneous Dirichlet-Neumann boundary conditions
on a surface § surrounding the system. These we set as

d
? (r)|r€5 =0 , or n(r)j(p] (l') =0 5 (8)
r res
with n(r) denoting a normal to the surface S at a point of r.
From Egs. (4)-(8) it is straightforward to obtain that
s
e(r,0)|V 2V =g4 |1 — 9
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where V is the volume of the system.
To quantize the SPs, we write the operator of the electric field of an SP eigenmode as a sum
over the eigenmodes,

E(r)=-Y A.Vo,(r)(a,+a)) (10)

where @ and @, are the SP creation and annihilation operators, —V@,(r) = E,(r) is the modal

field of an nth mode, and A,, is an unknown normalization constant. Note that a,; and 4, satisfy
the Bose-Einstein canonical commutation relations,

[G,a),] = Sn (11)

where 0, is the Kronecker symbol.
To find normalization constant A,, we invoke Brillouin’s expression [67] for the average
energy <ﬁ Sp> of SPs as a frequency-dispersive system,

. 1 d U
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where .
Hgp = Zhw <aTa + 2) (13)

is the SP Hamiltonian in the second quantization.

Finally, we substitute the field expansion (10) into Eq. (12) and take into account Eq. (9)
to carry out the integration. Comparing the result with Eq. (13), we immediately obtain an
expression for the quantization constant,

4mhs, \ '/ d
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Note that we have corrected a misprint in Ref. [15] by replacing the coefficient 27 by 4 7.



3.2.  Quantum density matrix equations (optical Bloch equations) for spaser

Here we follow Ref. [18]. The spaser Hamiltonian has the form

A =H,+HAsp— Y E(r,)d? (15)
14

where I:Ig is the Hamiltonian of the gain medium, p is a number (label) of a gain medium
chromophore, r, is its coordinate vector, and d?) is its dipole-moment operator. In this theory,
we treat the gain medium quantum mechanically but the SPs quasi-classically, considering d,
as a classical quantity (c-number) a, with time dependence as a, = ag, exp(—i®t), where ag,
is a slowly-varying amplitude. The number of coherent SPs per spasing mode is then given by
N, = |aon|2. This approximation neglects quantum fluctuations of the SP amplitudes. However,
when necessary, we will take into account these quantum fluctuations, in particular, to describe
the spectrum of the spaser.

Introducing p(P) as the density matrix of a pth chromophore, we can find its equation of
motion in a conventional way by commutating it with the Hamiltonian (15) as

ihp(”) - [p(”),I:I] , (16)

where the dot denotes temporal derivative. We use the standard rotating wave approximation
(RWA), which only takes into account the resonant interaction between the optical field and
chromophores. We denote |1) and |2) as the ground and excited states of a chromophore, with

the transition |2) = |1) resonant to the spasing plasmon mode 7. In this approximation, the time

dependence of the nondiagonal elements of the density matrix is (p(")) = ﬁg) exp(ior), and

(P(” )) = pf’z’)* exp(—iwt), where ﬁl(g) is an amplitude slowly varying in time, which defines

the coherence (polarization) for the |2) = |1) spasing transition in a pth chromophore of the

gain medium.

Introducing a rate constant I'|, to describe the polarization relaxation and a difference ng‘? =

pg) — pl(lf ) as the population inversion for this spasing transition, we derive an equation of

motion for the non-diagonal element of the density matrix as
piy) = —li(@— 012) +T1a] py5 +iaoun’y O (17

where

Q) = —4,d15 Ve, (x,)/n (18)
is the one-plasmon Rabi frequency for the spasing transition in a pth chromophore, and d(l’;)
(p)
2

is the corresponding transitional dipole element. Note that always d}’ is either real or can be

made real by a proper choice of the quantum state phases, making the Rabi frequency Q(]g)
a real quantity.

An equation of motion for 3, can be found in a standard way by commutating it with H and
adding the corresponding decay and excitation rates. To provide conditions for the population
inversion (n}, > 0), we imply existence of a third level. For simplicity, we assume that it very
rapidly decays into the excited state |2) of the chromophore, so its own populations is negligible.
It is pumped by an external source from the ground state (optically or electrically) with some
rate that we will denote g. In this way, we obtain the following equation of motion:

also

i) = —atm [a0,p( Q| 0 (145 g (1-nif)) (19)



where 7, is the decay rate [2) — |1).

The stimulated emission of the SPs is described as their excitation by the local field created
by the coherent polarization of the gain medium. The corresponding equation of motion can be
obtained using Hamiltonian (15) and adding the SP relaxation with a rate of ¥, as

don = [i (@ — @) — Yol aon +iaon Y p Q). (20)
p

As an important general remark, the system of Egs. (17), (19), and (20) is highly nonlinear:
each of these equations contains a quadratic nonlinearity: a product of the plasmon-field am-
plitude ao, by the density matrix element pj, or population inversion n,;. Altogether, this is
a six-order nonlinearity. This nonlinearity is a fundamental property of the spaser equations,
which makes the spaser generation always an fundamentally nonlinear process. This process
involves a nonegqilibrium phase transition and a spontaneous symmetry breaking: establishment
of an arbitrary but sustained phase of the coherent SP oscillations.

A relevant process is spontaneous emission of SPs by a chromophore into a spasing SP mode.

The corresponding rate )ép ) for a chromophore at a point r, can be found in a standard way
using the quantized field (10) as

T+ %)°
(02— )"+ T+ 1)

As in Schawlow-Towns theory of laser-line width [68], this spontaneous emission of SPs leads
to the diffusion of the phase of the spasing state. This defines width ¥; of the spasing line as

x, (1) 7
= TN, 1 )
This width is small for a case of developed spasing when N, > 1. However, for N, ~ 1, the

predicted width may be too high because the spectral diffusion theory assumes that 7; < ¥%,. To

take into account this limitation in a simplified way, we will interpolate to find the resulting
~1)2
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(22)

spectral width I's of the spasing line as I'y = (yn’ 24 Ys 2)

We will also examine the spaser as a bistable (logical) amplifier. One of the ways to set the
spaser in such a mode is to add a saturable absorber. This is described by the same Eqgs. (17)-
(20) where the chromophores belonging to the absorber are not pumped by the external source
directly, i.e., for them in Eq. (19) one has to set g = 0.

Numerical examples are given for a silver nanoshell where the core and the external dielec-
tric have the same permittivity of &; = 2; the permittivity of silver is adopted from Ref. [69].
The following realistic parameters of the gain medium are used (unless indicated otherwise):
dip =1.5x10"7 esu, il'15 = 10 meV, 15 = 4 x 10'% s~! (this value takes into account the spon-
taneous decay into SPs), and density of the gain medium chromophores is . = 2.4 x 10%° cm ™3,
which is realistic for dye molecules but may be somewhat high for semiconductor quantum dots
that were proposed as the chromophores [15] and used in experiments [46]. We will assume a
dipole SP mode and chromophores situated in the core of the nanoshell as shown in Fig. 2 (d).
This configuration are of advantage both functionally (because the region of the high local fields
outside the shell is accessible for various applications) and computationally (the uniformity of
the modal fields makes the summation of the chromophores trivial, thus greatly facilitating
numerical procedures).

3.3.  Equations for CW regime

Physically, the spaser action is a result of spontaneous symmetry breaking when the phase of
the coherent SP field is established from the spontaneous noise. Mathematically, the spaser is



described by homogeneous differential Egs. (17)-(20). These equations become homogeneous
algebraic equations for the CW case. They always have a trivial, zero solution. However, they
may also possess a nontrivial solution describing spasing. An existence condition of such a
nontrivial solution is

(@ — @, +itn) " % (23)

(0y— oy +iTp) 'Y

- 2
ol [ = 1.
p

where y is the generation (spasing) frequency. Here, the population inversion of a pth chro-

mophore ngﬂ’) is explicitly expressed as

nf) = (g—p) x (24)
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From the imaginary part of Eq. (24) we immediately find the spasing frequency @,

{g+’y2+4Nn

Oy = (ho1 +T10,) /(h+T12) | (25)

which generally does not coincide with either the gain transition frequency @, or the SP fre-
quency @, but is between them. Note that this is a frequency walk-off phenomenon similar to
that well known in laser physics. Substituting Eq. (25) back into Egs. (24)-(25), we obtain a
system of equations

(% +T12)°
Wl (@2 = @) + (T2 + )
p
2

X

- 2
a! >’ A =1, (26)
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This system defines the stationary (for the CW generation) number of SPs per spasing mode,
N,.

Since né’f) < 1, from Egs. (26), (27) we immediately obtain a necessary condition of the
existence of spasing,

(%1 +F12)2
Yl2 [(0)21 — @)+ T2+ %)

T

This expression is fully consistent with Ref. [15]. The following order of magnitude estimate
of this spasing condition has a transparent physical meaning and is of heuristic value,

dHONe
ARV, ™~

L, (29)



where Q = @/, is the quality factor of SPs, V,, is the volume of the spasing SP mode, and N,
is the of number of the gain medium chromophores within this volume. Deriving this estimate,
we have neglected the detuning, i.e., set wy; — w, = 0. We also used the definitions of A,, of
Eq. (10) and Q(lg) given by Eq. (18), and the estimate |V, (r)|*> ~ 1/V following from the
normalization of the SP eigenmodes [ [V, (r)|*d®r = 1 of Ref. [41]. The result of Eq. (29) is,
indeed, in agreement with Ref. [15] where it was obtained in different notations.

It follows from Eq. (29) that for the existence of spasing it is beneficial to have a high quality
factor Q, a high density of the chromophores, and a large transition dipole (oscillator strength)
of the chromophore transition. The small modal volume V), (at a given number of the chro-
mophores N,) is beneficial for this spasing condition: physically, it implies strong feedback in
the spaser. Note that for the given density of the chromophores n. = N./V,,, this spasing con-
dition does not explicitly depend on the spaser size, which opens up a possibility of spasers of
a very small size limited from the bottom by only the nonlocality radius /,; ~ 1 nm. Another
important property of Eq. (29) is that it implies the quantum-mechanical nature of spasing and
spaser amplification: this condition fundamentally contains the Planck constant % and, thus,
does not have a classical counterpart. Note that in contrast to lasers, the spaser theory and Egs.
(28), (29) in particular do not contain speed of light, i.e., they are quasistatic.

Now we will examine the spasing condition and reduce it to a requirement for the gain
medium. First, we substitute into Eq. (28) all the definitions and assume the perfect resonance
between the generating SP mode and the gain medium, i.e., @, = @,;. As a result, we obtain
from Eq. (28),

ar s, |d12|2 2 3
S e /V [1—O@)] [E.(0)2d3r> 1, (30)
where the integral is extended over the volume V of the system, and the ®-function takes into

account a simplifying realistic assumption that the gain medium occupies the entire space free

from the core’s metal. We also assume that the orientations of the transition dipoles dgg) are

random and average over them, which results in the factor of 3 in the denominator in Eq. (30).
From Egs. (7) or (9) it can be obtained that

/V [1—O@)] [E.(r)*d*r=1-5,. (31)

Next, we give approximate expressions for the spectral parameter (6) , which are very accurate
for the realistic case of Q > 1,

2
Ims(@) = S Im (@) = 5, (1—5,) . (32)
& 0
Taking into account Egs. (31) and (32), we obtain from Eq. (30) a necessary condition of spas-
ing at a frequency @ as
470 |di2|*ne[1 —Res(w)] -
3 rCpRes(@)Ime, (o) — 7

This condition can also be given an alternative form conventional in laser physics in the
following way. For the sake of comparison, consider a continuous gain medium comprised of
the same chromophores as the gain shell of the spaser. Its gain g (it is the linear gain whose
dimensionality is cm™!) is given by a standard expression

(33)

47 0 \/a|d12‘2nc
=yl 34
& 3 ¢ hrlz ( )



(@) (b)

30000 30000
25000 €a=2 25000  €=10
= 20000 N N 2~ 20000 -
E = 8 £ kS
3 S = 3 S
= 15000 S & ~ 15000 C
) 1)
10000 10000
5000 5000
1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
ho (eV) hao (eV)

Fig. 3. Threshold gain for spasing g, for silver and gold, as indicated in the graphs, as a
function of the spasing frequency . The red line separates the area g,, < 3 x 103 em™!,
which can relatively easily be achieved with direct band-gap semiconductors (DBGSs). The

real part of the gain medium permittivity is denoted in the corresponding panels as &;.

Taking this into account, from in Eq. (33), we obtain the spasing criterion in terms of the gain

as
® Res(w)

8ih = c\/€4 1 —Res(w)

where g, has a meaning of the threshold gain needed for spasing. Importantly, this gain depends
only on the dielectric properties of the system and spasing frequency but not on the geometry of
the system or the distribution of the local fields of the spasing mode (hot spots, etc.) explicitly.
However, note that the system’s geometry (along with the permittivities) does define the spasing
frequency.

In Figs. 3 (a) and (b), we illustrate the analytical expression (35) for gold and silver, corre-
spondingly, embedded in a dielectric with €; = 2 (simulating a light glass) and &; = 10 (sim-
ulating a semiconductor), correspondingly. These are computed from Eq. (35) assuming that
the metal core is embedded into the gain medium with the real part of the dielectric function
equal to &;. As we see from Fig. 3, the spasing is possible for silver in the near-ir communi-
cation range and the adjacent red portion of the visible spectrum for a gain g < 3000 cm™!
(regions below the red line in Fig. 3) , which is realistically achievable with direct band-gap
semiconductors (DBGSs).

g Z gth ’ m&‘m(a)) ) (35)

3.4. Spaser in CW mode

The “spasing curve” (a counterpart of the light-light curve, or L-L curve, for lasers), which is
the dependence of the coherent SP population N, on the excitation rate g, obtained by solving
Eqgs. (26), (27), is shown in Fig. 4 (a) for four types of the silver nanoshells with the frequencies
of the spasing dipole modes as indicated, which are in the range from near-ir (ico; = 1.2 eV)
to mid-visible (hw; = 2.2 eV). In all cases, there is a pronounced threshold of the spasing at
an excitation rate g;, ~ 10'2 s~!. Soon above the threshold, the dependence N, (g) becomes
linear, which means that every quantum of excitation added to the active medium with a high
probability is stimulated to be emitted as a SP, adding to the coherent SP population, or is
dissipated to the heat due to the metal loss with a constant branching ratio between these two
processes.

While this is similar to conventional lasers, there is a dramatic difference for the spaser. In
lasers, a similar relative rate of the stimulated emission is achieved at a photon population of
~ 10'® — 10%°, while in the spaser the SP population is N, < 100. This is due to the much

~



(b)

400 n,,
0F—1 i : I }
300 f f
2x10'? 4x10'?
200 0.1 g (s71)
100
-0.2
-0.3
Al
s (meV) S(e)
ST 014 (@
41 (0
34 _ Spaser radiation
21 0.05 18710184 | plasmon fluorescence
br x103
' | | N | N ‘
53101 1x10" 1112 13
g(sh how (eV)
S(w) S(w)
M (e) 150 |
3+ g=2gm g=10gy,
2 1 100 j*
14 <10 50 -+
4 ] B x100
x10 /] { . fl()}\} < | }
1.1 1.2 1.3 1.1 1.2 1.3
haw (eV) hw (eV)

Fig. 4. Spaser SP population and spectral characteristics in the stationary state. The com-
putations are done for a silver nanoshell with the external radius Ry = 12 nm; the detuning
of the gain medium from the spasing SP mode is 7 (@, — @,) = —0.02 eV. The other pa-
rameters are indicated in the text in Sec. 3.2. (a) Number N,, of plasmons per spasing mode
as a function of the excitation rate g (per one chromophore of the gain medium). Computa-
tions are done for the dipole eigenmode with the spasing frequencies @; as indicated, which
were chosen by the corresponding adjustment of the nanoshell aspect ratio. (b) Population
inversion np; as a function of the pumping rate g. The color coding of the lines is the same
as in panel (a). (c) The spectral width I's of the spasing line (expressed as i’y in meV) as
a function of the pumping rate g. The color coding of the lines is the same as in panel (a).
(d)-(f) Spectra of the spaser for the pumping rates g expressed in the units of the threshold
rate g, as indicated in the panels. The curves are color coded and scaled as indicated.



stronger feedback in spasers because of the much smaller modal volume V,, — see discussion of
Eq. (29). The shape of the spasing curves of Fig. 4 (a) (the well-pronounced threshold with the
linear dependence almost immediately above the threshold) is in a qualitative agreement with
the experiment [27].

The population inversion number ny; as a function of the excitation rate g is displayed in
Fig. 4 (b) for the same set of frequencies (and with the same color coding) as in panel (a).
Before the spasing threshold, ny; increases with g to become positive with the onset of the
population inversion just before the spasing threshold. For higher g, after the spasing threshold
is exceeded, the inversion ny; becomes constant (the inversion clamping). The clamped levels
of the inversion are very low, ny; ~ 0.01, which again is due to the very strong feedback in the
spaser.

The spectral width I'; of the spaser generation is due to the phase diffusion of the quantum
SP state caused by the noise of the spontaneous emission of the SPs into the spasing mode, as
described by Eq. (22). This width is displayed in Fig. 4 (c) as a function of the pumping rate g.
At the threshold, I’y is that of the SP line ¥, but for stronger pumping, as the SPs accumulate
in the spasing mode, it decreases o< N, !, as given by Eq. (22). This decrease of Iy reflects the
higher coherence of the spasing state with the increased number of SP quanta and, correspond-
ingly, lower quantum fluctuations. As we have already mentioned, this is similar to the lasers
as described by the Schawlow-Townes theory [68].

The developed spasing in a dipole SP mode will show itself in the far field as an anomalously
narrow and intense radiation line. The shape and intensity of this line in relation to the lines of
the spontaneous fluorescence of the isolated gain medium and its SP-enhanced fluorescence line
in the spaser is illustrated in Figs. 4 (d)-(f). Note that for the system under consideration, there
is a 20 meV red shift of the gain medium fluorescence with respect to the SP line center. It is
chosen so to illustrate the spectral walk-off of the spaser line. For one percent in the excitation
rate above the threshold of the spasing [panel (d)], a broad spasing line (red color) appears
comparable in intensity to the SP-enhanced spontaneous fluorescence line (blue color). The
width of this spasing line is approximately the same as of the fluorescence, but its position is
shifted appreciably (spectral walk-off) toward the isolated gain medium line (green color). For
the pumping twice more intense [panel (e)], the spaser-line radiation dominates, but its width
is still close to that of the SP line due to significant quantum fluctuations of the spasing state
phase. Only when the pumping rate is an order of magnitude above the threshold, the spaser
line strongly narrows [panel (f)], and it also completely dominates the spectrum of the radiation.
This is a regime of small quantum fluctuations, which is desired in applications.

These results in the spasing region are different in the most dramatic way from previous
phenomenological models [43,51]. For instance, in a “toy model” [51], the width of the reso-
nance line tends to zero at the threshold of spasing and then broadens up again. This distinction
of the present theory is due the nature of the spasing as a spontaneous symmetry breaking
(nonequilibrium phase transition with a randomly established but sustained phase) leading to
the establishment of a coherent SP state. This non-equilibrium phase transition to spasing and
the spasing itself are contained in the present theory due to the fact that the fundamental equa-
tions of the spasing (17), (19), and (20) are nonlinear, as we have already discussed above in
conjunction with these equations — see the text after Eq. (20). The previous publications on
gain compensation by loss [43,51,53] based on linear electrodynamic equations do not contain
spasing. Therefore, they are not applicable in the region of the complete loss compensation and
spasing.



3.5.  Spaser as ultrafast quantum nanoamplifier
3.5.1. Problem of setting spaser as an amplifier

As we have already mentioned in Sec. 1, a fundamental and formidable problem is that, in
contrast to the conventional lasers and amplifiers in quantum electronics, the spaser has an in-
herent feedback, which is due to the localization of SP modes, which fundamentally cannot be
removed. Such a spaser will develop generation and accumulation of the macroscopic number
of coherent SPs in the spasing mode. This leads to the the population inversion clamping in the
CW regime at a very low level — cf. Fig. 4 (b). This CW regime corresponds to the net ampli-
fication equal zero, which means that the gain exactly compensates the loss, which condition
is expressed by Eq. (26). This is a consequence of the nonlinear gain saturation. This holds for
any stable CW generator in the CW regime (including any spaser or laser) and precludes using
them as amplifiers.

There are several ways to set a spaser as a quantum amplifier. One of them is to reduce
the feedback, i.e., to allow some or most of the SP energy in the spaser to escape from the
active region, so the spaser will not generate in the region of amplification. Such a root has
successfully been employed to build a SPP plasmonic amplifier on the long-range plasmon
polaritons [64]. A similar root for the SP spasers would be to allow some optical energy to
escape either by a near-field coupling or by a radiative coupling to far-field radiation. The near-
field coupling approach is promising for building integrated active circuits of the spasers.

Following Ref. [18], we consider here two distinct approaches for setting the spasers as
quantum nanoamplifiers. The first is a transient regime based on the fact that the establishment
of the CW regime and the consequent inversion clamping and the total gain vanishing require
some time that is determined mainly by the rate of the quantum feedback and depends also on
the relaxation rates of the SPs and the gain medium. After the population inversion is created
by the onset of pumping and before the spasing spontaneously develops, as we show below in
this Section, there is a time interval of approximately 250 fs, during which the spaser provides
usable (and as predicted, quite high) amplification — see Sec. 3.6 below.

The second approach to set the spaser as a logical quantum nanoamplifier is a bistable regime
that is achieved by introducing a saturable absorber into the active region, which prevents the
spontaneous spasing. Then injection of a certain above-threshold number of SP quanta will sat-
urate the absorber and initiate the spasing. Such a bistable quantum amplifier will be considered
below in Sec. 3.6.1.

The temporal behavior of the spaser has been found by direct numerical solution of Egs.
(17)-(20). This solution is facilitated by the fact that in the model under consideration all the
chromophores experience the same local field inside the nanoshell, and there are only two types
of such chromophores: belonging to the gain medium and the saturable absorber, if it is present.

3.6.  Monostable spaser as a nanoamplifier in transient regime

Here we consider a monostable spaser in a transient regime. This implies that no saturable
absorber is present. We will consider two pumping regimes: stationary and pulse.

Starting with the stationary regime, we assume that the pumping at a rate (per one chro-
mophore) of g = 5 x 10'? s~! starts at a moment of time # = 0 and stays constant after that.
Immediately at = 0, a certain number of SPs are injected into the spaser. We are interested in
its temporal dynamics from this moment on.

The dynamical behavior of the spaser under this pumping regime is illustrated in Figs. 5 (a),
(b). As we see, the spaser, which starts from an arbitrary initial population N, rather rapidly,
within a few hundred femtoseconds approaches the same stationary (“logical”) level. At this
level, an SP population of N,, = 67 is established, while the inversion is clamped at a low level of
ny1 = 0.02. On the way to this stationary state, the spaser experiences relaxation oscillations in
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Fig. 5. Ultrafast dynamics of spaser. (a) For monostable spaser (without a saturable ab-
sorber), dependence of SP population in the spasing mode N, on time . The spaser is
stationary pumped at a rate of g = 5 x 10'2 s~!. The color-coded curves correspond to the
initial conditions with the different initial SP populations, as shown in the graphs. (b) The
same as (a) but for the temporal behavior of the population inversion ;. (c) Dynamics of
a monostable spaser (no saturable absorber) with the pulse pumping described as the initial
inversion np; = 0.65. Coherent SP population ¥, is displayed as a function of time ¢. Dif-
ferent initial populations are indicated by color-coded curves. (d) The same as (c) but for
the corresponding population inversion n;;. (¢) The same as (a) but for bistable spaser with
the saturable absorber in concentration n, = 0.66n,.. (f) The same as (b) but for the bistable
spaser. (g) The same as (e) but for the pulse pumping with the initial inversion ny; = 0.65.
(h) The same as (g) but for the corresponding population inversion 7.



both the SP numbers and inversion, which have a trend to oscillate out of phase [compare panels
(a) and (b)]. This temporal dynamics of the spaser is quite complicated and highly nonlinear
(unharmonic). It is controlled not by a single relaxation time but by a set of the relaxation rates.
Clearly, among these are the energy transfer rate from the gain medium to the SPs and the
relaxation rates of the SPs and the chromophores.

In this mode, the main effect of the initial injection of the SPs (described theoretically as
different initial values of N,,) is in the interval of time it is required for the spaser to reach the
final (CW) state. For very small N,, which in practice can be supplied by the noise of the spon-
taneous SP emission into the mode, this time is approximately 250 fs (cf.: the corresponding
SP relaxation time is less then 50 fs). In contrast, for the initial values of N, = 1 — 5, this time
shortens to 150 fs.

Now consider the second regime: pulse pumping. The gain-medium population of the spaser
is inverted at + = O to saturation with a short (much shorter than 100 fs) pump pulse. Simul-
taneously, at t = 0, some number of plasmons are injected (say, by an external nanoplasmonic
circuitry). In response, the spaser should produce an amplified pulse of the SP excitation. Such
a function of the spaser is illustrated in Figs. 5 (c) and (d).

As we see from panel (c), independently from the initial number of SPs, the spaser always
generates a series of SP pulses, of which only the first pulse is large (at or above the logical level
of N, ~ 100). (An exception is a case of little practical importance when the initial N, = 120
exceeds this logical level, when two large pulses are produced.) The underlying mechanism
of such a response is the rapid depletion of the inversion seen in panel (d), where energy is
dissipated in the metal of the spaser. The characteristic duration of the SP pulse ~ 100 fs is
defined by this depletion, controlled by the energy transfer and SP relaxation rates. This time
is much shorter than the spontaneous decay time of the gain medium. This acceleration is due
to the stimulated emission of the SPs into the spasing mode (which can be called a “stimulated
Purcell effect”). There is also a pronounced trend: the lower is initial SP population N,,, the later
the spaser produces the amplified pulse. In a sense, this spaser functions as a pulse-amplitude
to time-delay converter.

3.6.1. Bistable spaser with saturable absorber as an ultrafast nanoamplifier

Now let us consider a bistable spaser as a quantum threshold (or, logical) nanoamplifier. Such
a spaser contains a saturable absorber mixed with the gain medium with parameters indicated
at the end of Sec. 3.2 and the concentration of the saturable absorber n, = 0.66n.. This case of
a bistable spaser amplifier is of a particular interest because in this regime the spaser comes as
close as possible in its functioning to the semiconductor-based (mostly, MOSFET-based) digital
nanoamplifiers. As in the previous Subsection, we will consider two cases: the stationary and
short-pulse pumping.

We again start with the case of the stationary pumping at a rate of g =5 x 10'2 s~!. We show
in Figs. 5 (e), (f) the dynamics of such a spaser. For a small initial population N, = 5 x 1073
simulating the spontaneous noise, the spaser is rapidly (faster than in 50 fs) relaxing to the
zero population [panel (e)], while its gain-medium population is equally rapidly approaching
a high level [panel (f)] np; = 0.65 that is defined by the competition of the pumping and the
enhanced decay into the SP mode (the purple curves). This level is so high because the spasing
SP mode population vanishes and the stimulated emission is absent. After reaching this stable
state (which one can call, say, “logical zero”), the spaser stays in it indefinitely long despite the
continuing pumping.

In contrast, for initial values N, of the SP population large enough [for instance, for N, =5, as
shown by the blue curves in Figs. 5 (e) and (f)], the spaser tends to the “logical one” state where
the stationary SP population reaches the value of N, ~ 60. Due to the relaxation oscillations,



it actually exceeds this level within a short time of < 100 fs after the seeding with the initial
SPs. As the SP population N, reaches its stationary (CW) level, the gain medium inversion ny|
is clamped down at a low level of a few percent, as typical for the CW regime of the spaser.
This “logical one” state salso persists indefinitely, as long as the inversion is supported by the
pumping.

There is a critical curve (separatrix) that divide the two stable dynamics types (leading to the
logical levels of zero and one). For the present set of parameters this separatrix starts with the
initial population of N, ~ 1. For a value of the initial N, slightly below 1, the SP population
N, experiences a slow (hundreds fs in time) relaxation oscillation but eventually relaxes to zero
[Fig. 5 (e), black curve], while the corresponding chromophore population inversion ny| relaxes
to the high value ny; = 0.65 [panel (f), black curve]. In contrast, for a value of N, slightly higher
than 1 [light blue curves in panels (e) and (f)], the dynamics is initially close to the separaratrix
but eventually the initial slow dynamics tends to the high SP population and low chromophore
inversion through a series of the relaxation oscillations. The dynamics close to the separatrix
is characterized by a wide range of oscillation times due to its highly nonlinear character. The
initial dynamics is slowest (the “decision stage” of the bistable spaser that lasts 2 1 ps). The
“decision time” is diverging infinitesimally close to the separatrix, as is characteristic of any
threshold (logical) amplifier.

The gain (amplification coefficient) of the spaser as a logical amplifier is the ratio of the high
CW level to the threshold level of the SP population N, . For this specific spaser with the chosen
set of parameters, this gain is ~ 60, which is more than sufficient for the digital information
processing. Thus this spaser can make a high-gain, ~ 10 THz-bandwidth logical amplifier or
dynamical memory cell with excellent prospects of applications.

The last but not the least regime to consider is that of the pulse pumping in the bistable
spaser. In this case, the population inversion (n;; = 0.65) is created by a short pulse at = 0 and
simultaneously initial SP population N, is created. Both are simulated as the initial conditions
in Egs. (17)-(20). The corresponding results are displayed in Figs. 5 (g) and (h).

When the initial SP population exceeds the critical one of N, = 1 (the blue, green, and red
curves), the spaser responds with generating a short (duration less than 100 fs) pulse of the SP
population (and the corresponding local fields) within a time < 100 fs [panel (g)]. Simultane-
ously, the inversion is rapidly (within ~ 100 fs) exhausted [panel (h)].

In contrast, when the initial SP population N, is less than the critical one (i.e., N, < 1 in this
specific case), the spaser rapidly (within a time < 100 fs) relaxes as N, — 0 through a series
of realaxation oscillations — see the black and magenta curves in Fig. 5 (g). The corresponding
inversion decays in this case almost exponentially with a characteristic time ~ 1 ps determined
by the enhanced energy transfer to the SP mode in the metal — see the corresponding curves in
panel (h). Note that the SP population decays faster when the spaser is above the generation
threshold due to the stimulated SP emission leading to the higher local fields and enhanced
relaxation.

4. Compensation of loss by gain and spasing

4.1. Introduction to loss compensation by gain

Here, we will mostly follow Refs. [19,20]. A problem for many applications of plasmonics
and metamaterials is posed by losses inherent in the interaction of light with metals. There are
several ways to bypass, mitigate, or overcome the detrimental effects of these losses, which we
briefly discuss below.

(i) The most common approach consists in employing effects where the losses are not
fundamentally damaging such as surface plasmon polariton (SPP) propagation used in sens-
ing [11], ultramicroscopy [70,71], and solar energy conversion [72]. For realistic losses, there



are other effects and applications that are not prohibitively suppressed by the losses and use-
ful, in particular, sensing based on SP resonances and surface enhanced Raman scattering
(SERS) [2,11,73-75].

(i) Another promising idea is to use superconducting plasmonics to dramatically reduce
losses [76-80]. However, this is only applicable for frequencies below the superconducting
gaps, i.e., in the terahertz region.

(iii) Yet another proposed direction is using highly doped semiconductors where the Ohmic
losses can be significantly lower due to much lower free carrier concentrations [81]. However, a
problem with this approach may lie in the fact that the usefulness of plasmonic modes depends
not on the loss per se but on the quality factor Q, which for doped semiconductors may not be
higher than for the plasmonic metals.

(iv) One of the alternative approaches to low-loss plasmonic metamaterials is based on our
idea of the spaser: it is using a gain to compensate the dielectric (Ohmic) losses [82, 83]. In
this case the gain medium is included into the metamaterials. It surrounds the metal plasmonic
component in the same manner as in the spasers. The idea is that the gain will provide quan-
tum amplification compensating the loss in the metamaterials, which is quite analogous to the
spaser.

We will consider theory of the loss compensation in the plasmonic metamaterials containing
gain [19,20]. Below we show analytically that the full compensation or overcompensation of
the optical loss in a dense resonant gain metamaterial leads to an instability that is resolved
by its spasing (i.e., by becoming a generating spaser). We further show analytically that the
conditions of the complete loss compensation by gain and the threshold condition of spasing —
see Egs. (33) and (35) — are identical. Thus the full compensation (overcompensation) of the
loss by gain in such a metamaterial will cause spasing. This spasing limits (clamps) the gain —
see Sec. 3.4 — and, consequently, inhibits the complete loss compensation (overcompensation)
at any frequency.

4.2.  Permittivity of nanoplasmonic metamaterial

We consider, for certainty, an isotropic and uniform metamaterial that, by definition, in a range
of frequencies @ can be described by the effective permittivity €(®) and permeability i ().
We will concentrate below on the loss compensation for the optical electric responses; similar
consideration for the optical magnetic responses is straightforward. Our theory is applicable for
the true three-dimensional (3d) metamaterials whose size is much greater than the wavelength
A (ideally, an infinite metamaterial).

Consider a small slab of such a metamaterial with sizes much greater that the unit cell but
much smaller than A. Such a piece is a metamaterial itself. Let us subject this metamaterial to
a uniform electric field E(w) = —V¢ (r, o) oscillating with frequency ®. Note that E(®) is the
amplitude of the macroscopic electric field inside the metamaterial. A true periodic metamate-
rial is a crystal where the eigenmodes are Bloch states [84]. In such a state, the field magnitude
is periodic on the lattice in accord with the Bloch theorem. Consequently, the influx and outflow
of energy balance each other. Thus, selecting a metamaterial slab instead of an infinite crystal
will not affect the loss and its compensation.

We will denote the local field at a point r inside this metamaterial as e(r,®) = —Vo(r, ®).
We assume standard boundary conditions

for r belonging to the surface S of the slab under consideration.
To present our results in a closed form, we first derive a homogenization formula used in
Ref. [85] (see also references cited therein). By definition, the electric displacement in the



volume V of the metamaterial is given by a formula
1
D(r,0) =, / e(r, )e(r,0)dV , 37)
1%

where £(r, ®) is a position-dependent permittivity. This can be identically expressed (by multi-
plying and dividing by the conjugate of the macroscopic field E*) and, using the Gauss theorem,
transformed to a surface integral as

D = VE%(G))/‘/E*(w)s(r,w)e(r,w)dV:
1

VE* (o)

/S 0* (r, ®)&(r, )e(r, 0)dS | (38)

where we took into account the Maxwell continuity equation V [e(r, ®)e(r, ®)] = 0. Now, using
the boundary conditions of Eq. (36), we can transform it back to the volume integral as

D = /S 0" (1)e(r, ®)e(r, )dS =

1
VE*(0)
1

W/Ve(r, ) le(r, )2V . (39)

From the last equality, we obtain the required homogenization formula as an expression for the
effective permittivity of the metamaterial:

_ 1
(o) = o /V £(r,0)|e(r, 0)]2dV . (40)

4.3.  Plasmonic eigenmodes and effective resonant permittivity of metamaterials

This piece of the metamaterial with the total size R < A can be treated in the quasistatic ap-
proximation. The local field inside the nanostructured volume V of the metamaterial is given
by the eigenmode expansion [41, 66, 86]

e(r,w) = E(w)fzs(w“ﬁlan(r), 1)
4, — E(o) /V 6 (r)En(r)dV,

where we remind that E(®) is the macroscopic field. In the resonance, ® = @,, only one term
at the pole of in Eq. (41) dominates, and it becomes

a
e(r,0) =E(w)+ imm,(r) : 42)
The first term in this equation corresponds to the mean (macroscopic) field and the second one
describes the deviations of the local field from the mean field containing contributions of the
hot spots [87]. The mean root square ratio of the second term (local field) to the first (mean
field) is estimated as
S fe

T Ims(@,)  sa(1—sn)

) (43)

where we took into account an estimate E,, ~ y—1/ 2. which follows from the eigenmode field
normalization [, |E,|*dV = 1, and

|
f=5 /V o(r)av (44)



where f is the metal fill factor of the system, and Q is the plasmonic quality factor. Deriving
expression (43), we have also taken into account an equality Ims(@,) = s,(1 —s,)/Q, which is
valid in the assumed limit of the high quality factor, Q > 1 (see the next paragraph).

For a good plasmonic metal Q >> 1. For most metal-containing metamaterials, the metal fill
factor is not small, typically f = 0.5. The eigenvalues s, are limited [12,41], 1 > s, > 0. Thus,
it is very realistic to assume the following condition

fo
sn(1—1s,)

If so, the second (local) term of the field (42) dominates and, with a good precision, the local
field is approximately the eigenmode’s field:

>1. (45)

dan

e(r,o) = im

E,(r). (46)
Substituting this into Eq. (40), we obtain a homogenization formula
&(0) = b, | e(r.0) B, aV | 1)
v

where b, > 0 is a real positive coefficient whose specific value is

b 1 (Q Iy G(r)En(r)dV)z @®)

3V sn(1—sy,)

Using Eq. (47), it is straightforward to show that the effective permittivity (47) simplifies
exactly to
E(@) = by [spem(®) + (1 —s,)en(@)] . (49)

4.4.  Conditions of loss compensation by gain and spasing

In the case of the full inversion (maximum gain) and in the exact resonance, the host medium
permittivity acquires the imaginary part describing the stimulated emission as given by the
standard expression ,
Arn |d12| ne
en(w)=¢g4—i 3 A, (50)

where €; = Re gy, dy; is a dipole matrix element of the gain transition in a chromophore center
of the gain medium, I'j, is a spectral width of this transition, and . is the concentration of
these centers (these notations are consistent with those used above in Secs. 3.2-3.6.1). Note that
if the inversion is not maximum, then this and subsequent equations are still applicable if one
sets as the chromophore concentration r, the inversion density: n. = n, —ny, where n, and n;
are the concentrations of the chromophore centers of the gain medium in the upper and lower
states of the gain transition, respectively.

The condition for the full electric loss compensation in the metamaterial and amplification
(overcompensation) at the resonant frequency ® = @, is

Imé&(w) <0 (51)

Taking Eq. (49) into account, this reduces to

2
_Amldi| ne(l=s) (52)

splm e, () 3 i <



Finally, taking into account that Img,(®) > 0, we obtain from Eq. (52) the condition of the
loss (over)compensation as

47 |ds|* ne [1 —Res(w))]

3 alpRes(o)Ime,(w) — 7

(53)

where the strict inequality corresponds to the overcompensation and net amplification. In Eq.
(50) we have assumed non-polarized gain transitions. If these transitions are all polarized along
the excitation electric field, the concentration n. should be multiplied by a factor of 3.

Equation (53) is a fundamental condition, which is precise [assuming that the requirement
(45) is satisfied, which is very realistic for metamaterials] and general. Moreover, it is fully
analytical and, actually, very simple. Remarkably, it depends only on the material character-
istics and does not contain any geometric properties of the metamaterial system or the local
fields. (Note that the system’s geometry does affect the eigenmode frequencies and thus enters
the problem implicitly.) In particular, the hot spots, which are prominent in the local fields of
nanostructures [41, 87], are completely averaged out due to the integrations in Egs. (40) and
47).

The condition (53) is completely non-relativistic (quasistatic) — it does not contain speed of
light ¢, which is characteristic of also of the spaser. It is useful to express this condition also
in terms of the total stimulated emission cross section o, (@) (where @ is the central resonance
frequency) of a chromophore of the gain medium as

cO.(®)+/€nc[1 —Res(w)]
oRes(w)Ime, (o)

>1. (54)

We see that Eq. (53) exactly coincides with a spasing condition expressed by Eq. (33). This
brings us to an important conclusion: the full compensation (overcompensation) of the optical
losses in a metamaterial [which is resonant and dense enough to satisfy condition (45)] and the
spasing occur under precisely the same conditions.

We have considered above in Sec. 3.3 the conditions of spasing, which are equivalent to
(54). These are given by one of equivalent conditions of Eqs. (33), (35), (53). It is also illus-
trated in Fig. 3. We stress that exactly the same conditions are for the full loss compensation
(overcompensation) of a dense resonant plasmonic metamaterial with gain.

We would like also to point out that the criterion given by the equivalent conditions of Eqgs.
(33), (35), (53), or (54) is derived for localized SPs, which are describable in the quasistatic ap-
proximation, and is not directly applicable to the propagating surface plasmon-polariton (SPP)
modes. However, we expect that very short-wavelength SPPs, whose wave vector k < [, can be
described by these conditions because they are, basically, quasistatic. For instance, the SPPs on
a thin metal wire of a radius R < [ are described by a dispersion relation [88]

~1/2
1 En 4g,
=g (e -n)] )

where ¥~ 0.57721 is the Euler constant. This relation is obviously quasistatic because it does
not contain speed of light c.
4.5. Discussion of spasing and loss compensation by gain

This fact of the equivalence of the full loss compensation and spasing is intimately related to the
general criteria of the the thermodynamic stability with respect to small fluctuations of electric
and magnetic fields — see Chap. IX of Ref. [67],

Imé(w) >0, Imf(w)>0, (56)



which must be strict inequalities for all frequencies for electromagnetically stable systems. For
systems in thermodynamic equilibrium, these conditions are automatically satisfied.

However, for the systems with gain, the conditions (56) can be violated, which means that
such systems can be electromagnetically unstable. The first of conditions (56) is opposite to
Egs. (51) and (53). This has a transparent meaning: the electrical instability of the system is
resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated by the fol-
lowing gedanken experiment. Take a small isolated piece of such a metamaterial (which is a
metamaterial itself). Consider that it is excited at an optical frequency o either by a weak exter-
nal optical field E or acquires such a field due to fluctuations (thermal or quantum). The energy
density & of such a system is given by the Brillouin formula [67]

1 doReE .,
= — E|°.
167 Jdw [E|

(57)

Note that for the energy of the system to be definite, it is necessary to assume that the loss is
not too large, |Re €| > Imé&. This condition is realistic for many metamaterials, including all
potentially useful ones.

The internal optical energy-density loss per unit time Q (i.e., the rate of the heat-density
production in the system) is [67]

(O] _
0= leg\mz . (58)

Assume that the internal (Ohmic) loss dominates over other loss mechanisms such as the ra-
diative loss, which is also a realistic assumption since the Ohmic loss is very large for the
experimentally studied systems and the system itself is very small (the radiative loss rate is
proportional to the volume of the system). In such a case of the dominating Ohmic losses, we
have d& /dt = Q. Then Egs. (57) and (58) can be resolved together yielding the energy & and
electric field |E| of this system to evolve with time 7 exponentially as

|E|oc V& oc e F:wlmé/a(wReg) . (59)

210)

We are interested in a resonant case when the metamaterial possesses a resonance at some
eigenfrequency w, ~ . For this to be true, the system’s behavior must be plasmonic, i.e.,
Re&(w) < 0. Then the dominating contribution to € comes from a resonant SP eigenmode n
with a frequency @, =~ @. In such a case, the dielectric function [41] (@) has a simple pole at
® = ®,. As aresult, d (0Re&) /d®w =~ wIReE/Jw and, consequently, I" = ¥, where ¥, is the
SP decay rate [12, 15]

_ Imegy(w)

"= SReen(@)
Jo

7 (60)
0=,

and the metal dielectric function g, is replaced by the effective permittivity € of the metamate-
rial. Thus, Eq. (59) is fully consistent with the spectral theory of SPs [12, 15].

If the losses are not very large so that energy of the system is meaningful, the Kramers-
Kronig causality requires [67] that d(@wRe&)/dw@ > 0. Thus, Im& < 0 in Eq. (59) would lead
toa negative decrement,

<o, 61)

implying that the initial small fluctuation starts exponentially grow in time in its field and en-
ergy, which is an instability. Such an instability is indeed not impossible: it will result in spasing
that will eventually stabilize |E| and & at finite stationary (CW) levels of the spaser generation.
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Fig. 6. Spasing criterion as a function of optical frequency @. The straight line (red on line)
represents the threshold for the spasing and full loss compensation, which take place for
the curve segments above it. (a) Computations for silver. The chromophore concentration
is ne = 6 x 10'8 cm™3 for the lower curve (black) and n, = 2.9 x 10'® cm ™3 for the upper
curve (blue on line). The black diamond shows the value of the spasing criterion for the
conditions of Ref. [48] — see the text. (b) Computations for gold. The chromophore con-
centration is 7. = 3 x 10!° cm =3 for the lower curve (black) and n. = 2 x 1020 ¢cm=3 for
the upper curve (blue on line).

Note that the spasing limits (clamps) the gain and population inversion making the net gain
to be precisely zero [18] in the stationary (continuous wave or CW) regime see Sec. 3.5 and
Fig. 4 (b). Above the threshold of the spasing, the population inversion of the gain medium is
clamped at a rather low level ny; ~ 1%. The corresponding net amplification in the CW spasing
regime is exactly zero, which is a condition for the CW regime. This makes the complete loss
compensation and its overcompensation impossible in a dense resonant metamaterial where the
feedback is created by the internal inhomogeneities (including its periodic structure) and the
facets of the system.

Because the loss (over)compensation condition (53), which is also the spasing condition, is
geometry-independent, it is useful to illustrate it for commonly used plasmonic metals, gold
and silver whose permittivity we adopt from Ref. [69]. For the gain medium chromophores,
we will use a reasonable set of parameters: I';y = 5 x 1013 s7! and dj» = 4.3 x 1078 esu.
The results of computations are shown in Fig. 6. (Note that this figure expresses a condition
of spasing equivalent to that of Fig. 3). For silver as a metal and n. = 6 x 10'® cm™3, the
corresponding lower (black) curve in panel (a) does not reach the value of 1, implying that no
full loss compensation is achieved. In contrast, for a higher but still very realistic concentration
of ne = 2.9 x 10" cm™3, the upper curve in Fig. 6 (a) does cross the threshold line in the
near-infrared region. Above the threshold area, there will be the instability and the onset of the
spasing. As Fig. 6 (b) demonstrates, for gold the spasing occurs at higher, but still realistic,
chromophore concentrations.

4.6. Discussion of published research on spasing and loss compensations

Now let us discuss the implications of these results for the research published recently on the
gain metamaterials. To carry out a quantitative comparison with Ref. [53], we turn to Fig. 6
(a) where the lower (black) curve corresponds to the nominal value of n. = 6 x 108 ¢m—3
used in Ref. [53]. There is no full loss compensation and spasing. This is explained by the fact
that Ref. [53] uses, as a close inspection shows, the gain dipoles parallel to the field (this is
equivalent to increasing n. by a factor of 3) and the local field enhancement [this is equivalent
to increasing n. by a factor of (g, +2)/3. Because the absorption cross section of dyes is
measured in the appropriate host media (liquid solvents or polymers), it already includes the
Lorentz local-field factor. To compare to the results of Ref. [53], we increase in our formulas
the concentration n, of the chromophores by a factor of €, +2 to n, = 2.9 x 10'° cm—3, which



corresponds to the upper curve in Fig. 6 (a). This curve rises above the threshold line exactly in
the same (infra)red region as in Ref. [53].

This agreement of the threshold frequencies between our analytical theory and numerical
theory [53] is not accidental: inside the region of stability (i.e., in the absence of spasing)
both theories should and do give close results, provided that the the gain-medium transition
alignment is taken into account, and the local field-factor is incorporated.

However, above the threshold (in the region of the overcompensation), there should be spas-
ing causing the population inversion clamping and zero net gain, and not a loss compensation.
To describe this effect, it is necessary to invoke Eq. (20) for coherent SP amplitude, which is
absent in Ref. [53]. Also fundamentally important, spasing, just like the conventional lasing, is
a highly-nonlinear phenomenon, which is described by nonlinear equations — see the discussion
after Eq. (20).

The complete loss compensation is stated in a recent experimental paper [89], where the
system is actually a nanofilm rather than a 3d metamaterial, to which our theory would have
been applicable. For the Rhodamine 800 dye used with extinction cross section [90] o = 2 X
10716 cm? at 690 nm in concentration n. = 1.2 x 10" cm™3, realistically assuming &; = 2.3,
for frequency 7w = 1.7 eV, we calculate from Eq. (54) a point shown by the magenta solid
circle in Fig. 6 (a), which is significantly above the threshold. Because in such a nanostructure
the local fields are very non-uniform and confined near the metal similar to the spaser, they
likewise cause a feedback. The condition of Eq. (45) is likely to be well-satisfied for Ref. [§9].
Thus, the system may spase, which would cause the the clamping of inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing indicated in the
experiment — see Ref. [89], which can be explained by various factors. Among them, the system
of Ref. [89] is a gain-plasmonic nanofilm and not a true 3d material. This system is not isotropic.
Also, the size of the unit cell a ~ 280 nm is significantly greater than the reduced wavelength
4, which violates the quasistatic conditions and makes the possibility of homogenization and
considering this system as an optical metamaterial problematic. This circumstance may lead
to an appreciable spatial dispersion. It may also cause a significant radiative loss and prevent
spasing for some modes.

We would also like to point out that the fact that the unit cell of the negative-refracting (or,
double-negative) metamaterial of Ref. [89] is relatively large, a ~ 280 nm, is not accidental.
As follows from theoretical consideration of Ref. [91], optical magnetism and, consequently,
negative refraction for metals is only possible if the minimum scale of the conductor feature
(the diameter d of the nanowire) is greater then the skin depth, d 2 I; &~ 25 nm, which allows
one to circumvent Landau-Lifshitz’s limitation on the existence of optical magnetism [67,91].
Thus, a ring-type resonator structure would have a size 2 2/ (two wires forming a loop) and
still the same diameter for the hole in the center, which comes to the total of > 4/; =~ 100 nm.
Leaving the same distance between the neighboring resonator wires, we arrive at an estimate
of the size of the unit cell a 2 8/; = 200 nm, which is, indeed, the case for Ref. [89] and other
negative-refraction “metamaterials” in the optical region. This makes our theory not directly
applicable to them. Nevertheless, if the spasing condition (33) [or (35), or (54)] is satisfied, the
system still may spase on the hot-spot defect modes.

In an experimental study of the lasing spaser [46], a nanofilm of PbS quantum dots (QDs)
was positioned over a two-dimensional metamaterial consisting of an array of negative split
ring resonators. When the QDs were optically pumped, the system exhibited an increase of
the transmitted light intensity on the background of a strong luminescence of the QDs but
apparently did not reach the lasing threshold. The polarization-dependent loss compensation
was only ~ 1 %. Similarly, for an array of split ring resonators over a resonant quantum well,
where the inverted electron-hole population was excited optically [92], the loss compensation



did not exceed ~ 8 %. The relatively low loss compensation in these papers may be due either
to random spasing and/or spontaneous or amplified spontaneous emission enhanced by this
plasmonic array, which reduces the population inversion.

A dramatic example of possible random spasing is presented in Ref. [48]. The system studied
was a Kretschmann-geometry SPP setup [93] with an added ~ 1um polymer film containing
Rodamine 6G dye in the n. = 1.2 x 10! cm~3 concentration. When the dye was pumped, there
was outcoupling of radiation in a range of angles. This was a threshold phenomenon with the
threshold increasing with the Kretschmann angle. At the maximum of the pumping intensity,
the widest range of the outcoupling angles was observed, and the frequency spectrum at every
angle narrowed to a peak near a single frequency i ~ 2.1 eV.

These observations of Ref. [48] can be explained by the spasing where the feedback is pro-
vided by roughness of the metal. At the high pumping, the localized SPs (hots spots), which
possess the highest threshold, start to spase in a narrow frequency range around the maximum
of the spasing criterion — the left-hand side of Eq. (53). Because of the sub-wavelength size
of these hot spots, the Kretschmann phase-matching condition is relaxed, and the radiation is
outcoupled into a wide range of angles.

The SPPs of Ref. [48] excited by the Kretschmann coupling are short-range SPPs, very close
to the antisymmetric SPPs. They are localized at subwavelength distances from the surface,
and their wave length in the plane is much shorter the @/c. Thus they can be well described
by the quasistatic approximation and the present theory is applicable to them. Substituting the
above-given parameters of the dye and the extinction cross section o, = 4 x 1071 cm? into
Eq. (54), we obtain a point shown by the black diamond in Fig. 6, which is clearly above
the threshold, supporting our assertion of the spasing. Likewise, the amplified spontaneous
emission and, possibly spasing, appear to have prevented the full loss compensation in a SPP
system of Ref. [60].

Note that the long-range SPPs of Ref. [64] are localized significantly weaker (at distances
~ A) than those excited in Kretschmann geometry. Thus the long-range SPPs experience a
much weaker feedback, and the amplification instead of the spasing can be achieved. Generally,
the long-range SPPs are fully electromagnetic (non-quasistatic) and are not describable in the
present theory.

As we have already discussed in conjunction with Fig. 3, the spasing is readily achievable
with the gain medium containing common DBGSs or dyes. There have been numerous experi-
mental observations of the spaser — see, in particular, Refs. [27-33]. Among them is a report of
a SP spaser with a 7-nm gold nanosphere as its core and a laser dye in the gain medium [27], ob-
servations of the SPP spasers (also known as nanolasers) with silver as a plasmonic-core metal
and DBGS as the gain medium with a 1d confinement [28, 31], a tight 2d confinement [29],
and a 3d confinement [30]. There also has been a report on observation of a SPP microcylinder
spaser [94]. A high efficiency room-temperature semiconductor spaser with a DBGS InGaAS
gain medium operating near 1.5 um (i.e., in the communication near-ir range) has been re-
ported [31].

The research and development in the area of spasers as quantum nano-generators is very
active and will undoubtedly lead to further rapid advances. The next in line is the spaser as an
ultrafast nanoamplifier, which is one of the most important tasks in nanotechnology.

In contrast to this success and rapid development in the field of spasing and spasers, there has
so far been a comparatively limited progress in the field of loss compensation by gain in meta-
materials, which is based on the same principles of quantum amplification as the spaser. This
status exists despite a significant effort in this direction and numerous theoretical publications,
e.g., [53,95]. There has been so far a single, not yet confirmed independently, observation of
the full loss compensation in a plasmonic metamaterial with gain [89].



In large periodic metamaterials, plasmonic modes generally are propagating waves (SPPs)
that satisfy Bloch theorem [84] and are characterized by quasi-wavevector k. These are prop-
agating waves except for the band edges where ka = £, where a is the lattice vector. At the
band edges, the group velocity v, of these modes is zero, and these modes are localized, i.e.,
they are SPs. Their wave function is periodic with period 2a, which may be understood as a
result of the Bragg reflection from the crystallographic planes. Within this 2a period, these
band-edge modes can, indeed, be treated quasistatically because 2a < I;, 4. If any of the band-
edge frequencies is within the range of compensation [where the condition (33) [or, (35)] is
satisfied], the system will spase. The same is true for non-propagating modes whise frequen-
cies are in the bandgap. In fact, at the band edge or in the band gap, a metamaterial with gain is
similar to a distributed feedback (DFB) laser [96] — see also the next paragraph.

There has been a recent experimental observation [33] of a electrically-pumped DFB
nanolaser (spaser) working the communication frequency range at room temperature. This
spaser generates on a stop-band (non-propagating) plasmonic mode, i.e., a mode with fre-
quency within the band gap. The system is a one-dimensional plasmonic-crystal metamaterial
with gain, containing a Bragg grating. There is a strong coupling between the unit cells typical
for DFB lasers. Because of the suppression of the spontaneous emission and the strong cou-
pling between the unit cells leading to efficient feedback, this spaser has a significantly lower
threshold, narrow spectral line, and higher efficiency of the generation than the ones working
on SPP reflection from the edges. This observation is in a full agreement with our theoreti-
cal arguments [97] and in a direct contradiction with the contention of Ref. [98] that coupling
between the unit cells increases the spasing threshold.

Moreover, not only the SPPs, which are at the band edge or in the band gap, will be local-
ized. Due to unavoidable disorder caused by fabrication defects in metamaterials, there will be
scattering of the SPPs from these defects. Close to the band edge, the group velocity becomes
small, v, — 0. Because the scattering cross section of any wave is o v 2, the corresponding
SPPs experience Anderson localization [99]. Also, there always will be SPs nanolocalized at
the defects of the metamaterial, whose local fields are hot spots [87,100,101]. Each of such hot
spots within the bandwidth of conditions (33) or (35) will be a generating spaser, which clamps
the inversion and precludes the full loss compensation.

Note that for a 2d metamaterial (metasurface), the amplification of the spontaneous emission
and spasing may occur in SPP modes propagating in plane of the structure, unlike the signal
that propagates normally to it as in Ref. [8§9].
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