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We describe ideas and results of controlling surface plasmon polaritons (SPPs) in
nanoplasmonic waveguides. The adiabatic concentration of the optical energy in
tapered nanoplasmonic waveguides is presented as a universal approach to transfer
of energy and coherence from macro- or microscale to the nanoscale. Coherent
control allows for directed and dynamically-defined concentration of the optical
energy on nanometer-femtosecond spatio-temporal scale.

1. Introduction

Nanooptics and nanoplasmonics are experiencing presently a period of explosive

growth and attracting a great interest. Nanoplasmonics deals with electronic pro-

cesses at the surfaces of metal nanostructures, which are due to electronic excitations

called surface plasmons (SPs) that can localize optical energy on the nanoscale.1–3

The nanoplasmonic processes can potentially be the fastest in optics: their shortest

evolution times are defined by the inverse spectral width of the region of the plas-

monic resonances and are on the order of 100 as.4 The relaxation times of the SP

excitations are also ultrashort, in the 10 − 100 fs range.5–9 Such nanolocalization

and ultrafast kinetics make plasmonic nanostructures promising for various appli-

cations, especially for the ultrafast computations, data control and storage on the

nanoscale.

These and potentially many other applications require precise control over the

optical excitations of the nanostructures in time and space on the femtosecond-

nanometer scale. Such a control cannot be imposed by far-field focusing of the

optical radiation because the diffraction limits its dimension to greater than half

wavelength. In other words, the optical radiation does not have spatial degrees

of freedom on the nanoscale. There is a different class of approaches to control a

system on nanoscale based on plasmonic nanoparticles or waveguides brought to

the near-field region of the system. Among these we mention: the tips of scanning

near-field optical microscopes,1 adiabatic plasmonic waveguides,10 nanowires,11,12

plasmonic superlenses13 or hyperlenses.14 In all these cases, massive amount of

1
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metal is brought to the vicinity of the plasmonic nanosystem, which will produce

strong perturbations of its spectrum and SP eigenmodes, cause additional optical

losses, and adversely affect the ultrafast dynamics and energy nanolocalization in the

system. This nanowaveguide approach also may not work because of the excitation

delocalization due to the strong interaction (capacitive coupling) at the nanoscale

distances for optical frequencies.

We have proposed15 a principally different approach to ultrafast optical control

on the nanoscale based on the general idea of coherent control. The coherent control

of the quantum state of atom and molecules is based on the directed interference of

the different quantum pathways of the optical excitation,16–25 which is carried out

by properly defining the phases of the corresponding excitation waves. This coherent

control can also be imposed by an appropriate phase modulation of the excitation

ultrashort (femtosecond) pulse.22,26–28 Shaping the polarization of a femtosecond

pulse has proven to be a useful tool in controlling quantum systems.29

Our initial idea15 has been subsequently developed theoretically29–32 and con-

firmed experimentally.33–35 In this coherent control approach, one sends from the

far-field zone a shaped pulse (generally, modulated by phase, amplitude, and polar-

ization) that excites a wide-band packet of SP excitations in the entire nanosystem.

The phases, amplitudes, and polarizations of these modes are forced by this shaped

excitation pulse in such a manner that at the required moment of time and at the

targeted nanosite, these modes’ oscillations add in phase while at the other sites

and different moments of time they interfere destructively, which brings about the

desired spatio-temporal localization. Theoretically, the number of the effective de-

grees of freedom that a shaped femtosecond pulse may apply to a nanoplasmonic

system is on the order of its quality factor Q (i.e., the number of coherent plas-

monic oscillations that system undergoes before dephasing). In the optical region

for noble metals Q ∼ 100, providing a rich, ∼ 100-dimensional space of controlling

parameters. The coherent control approach is non-invasive: in principle, it does not

perturb or change the nanosystem’s material structure in any way.

The coherent control approach can be employed to control not only nanosystems,

which support localized SP modes, but also extended nanostructured systems that

carry surface plasmon polaritons. In this case, the phase and polarization mod-

ulation of the excitation radiation can determine the propagation pathway in a

nanoplasmonic waveguide splitters.32,36

Even more promising is the recent idea of the full coherent control on the

nanoscale.37 The idea of this approach is a nanoplasmonic counterpart of the Ac-

tive Phased Array radar (APAR), also called Active Electronically Steered Array

(AESA) radar. It also incorporates ideas of the adiabatic concentration of the

optical energy on nanoscale (see Sec. 2) and of time-reversal (back-tracing).

The full coherent control on the nanoscale is achieved by placing an array (pos-

sibly, a linear array) of nanoparticles on a SPP nanoplasmonic waveguide. Each

such particle may be, in particular, a nanosphere, nanoshell, nano-indentation of
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the surface, or simply a fragment of the surface roughness. These nanoparticles are

positioned far away from each other so they can independently be excited, each by

its own shaped (phase-, amplitude-, and polarization-modulated) ultrashort exci-

tation pulse. As a result, there will be a packet of SPPs propagating from each

of the nanoparticles in a non-directed way. However, as a result of the interfer-

ence of these SPP waves, a propagating wavefront will be established. By a proper

phase modulation, one can force all these SPP waves at every frequency to interfere

coherently at a certain point of the nanoplasmonic waveguides at a defined time,

creating un ultrashort and nanolocalized spike of the optical fields, i.e., fully con-

trolled spatio-temporal localization.37 The required phase modulation of the each

of the controlling pulses can be found using the principle of back-propagation (or,

time-reversal). Such a system can be called NAPAR (Nanoplasmonic Active Phased

Array “Radar”). We will describe this approach in Sec. 3.

2. Adiabatic Concentration of Optical Energy on Nanoscale

2.1. Introduction to Adiabatic Concentration in Nanoplasmonics

A central problem of nanooptics is the commonly known impossibility to concen-

trate (focus) optical radiation on the nanoscale because the wavelength of light is

on the microscale, many orders of magnitude too large. This problem appear to be

fundamental because the electric and magnetic component of the electromagnetic

field exchange energy on distances of half wave length, which is on order of a mi-

cron for optical frequencies, i.e., three orders of magnitude larger than the desired

nanoscale. However, this limitation is removed in nanoplasmonics, because SPs

are electrostatic excitations where the electric field and electron kinetic energy are

exchanged in the process of optical oscillations.

Nevertheless, any attempts to couple a laser source to the nanoscale through,

e.g., tapered fibers (see, e.g., Refs. 38–41) or by focusing on metal tips42,43 lead

to a tremendously low energy efficiency: only a very small part of the excitation

energy is transferred to the nanoscale. This is due to the fact that the absorptions,

scattering, and other effective cross sections of such nanosystems are still much less

than the minimum size of the focal spot, which is on the microscale.

In this Section, we show that such impossibility is not a law of nature: we in-

troduce a way to focus and concentrate the optical radiation on the nanoscale, in

principle, without major losses by exciting the propagating surface plasmon polari-

tons (SPPs) and then adiabatically, but as rapidly as possible, transforming them

into localized surface plasmons (SPs). The latter are purely electric oscillations

(without significant magnetic component) that can and do nano-localize.3

This possibility of the adiabatic transformation of the propagating SPPs, which

are electromagnetic waves, into standing, non-propagating SPs has been introduced

in Refs. 10,44. These publications considered various graded systems for the SPP

adiabatic concentration of optical energy: a SPP waveguide consisting of a semi-
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infinite metal covered by a semi-infinite dielectric with graded dielectric permittiv-

ity, a dielectric nanolayer on massive metal, and a tapered plasmonic waveguide.

These systems are discussed in detail below in this Section along with the adi-

abatic concentration of SPPs in metal nanolayers surrounded by dielectrics and

dielectric nanolayers surrounded by metal. We note that efficient adiabatic nanofo-

cusing of SPPs has been shown theoretically also in SPP waveguides that made of

nanogrooves on metal.45 Such metal grooves have been shown experimentally to be

effcient SPP waveguides.46

Specifically, the adiabatic transformation from the far to near zone can be done

in the following way. Light waves can be transformed with high efficiency into SPPs

using, e.g., a grating coupler or the well-known Kretschmann geometry. These SPPs

propagate along a graded nanoplasmonic waveguide along which parameters slowly

(adiabatically) change in such a way that the phase velocity of the SPPs tends

to zero in the vicinity of some point at a finite distance. It is required that the

excited SPP mode exists without a cut-off in the entire range of these parameters

including this stopping point. Then the adiabatic theorem predicts that the wave

will propagate without back-reflection and scattering into three dimensions (3D)

to the stopping point. Thus this wave will adiabatically slow down and asymp-

totically stop at this point. This will result into the adiabatic conversion of the

propagating SPPs into the stopped, quasielectrostatic SPs. At this stopping point

the wavelength of the SPPs asymptotically tends to zero. This is in sharp contrast

to massive (quasi)particles whose wavelength becomes infinite at the stopping point,

which violates the adiabatic approximation. Note that the adiabatic approximation

is called the Wentzel-Kramers-Brillouin or quasiclassical approximation in quantum

mechanics.47

As a result of the above-described process, it is possible to adiabatically convert

with high efficiency the propagating SPPs into the standing waves, which are SPs

localized on the nanoscale. Being adiabatic to avoid back-reflection and scattering,

this conversion nevertheless should be as rapid as possible to prevent the absorption

losses in the metal. The efficiency of transformation along with maximum value

of the achieved local optical fields are determined by the length of the adiabatic

waveguide and the possible minimum value of the adiabatic parameter, and are

limited only by the dielectric losses in the graded polaritonic waveguide.

We will consider below some examples of such systems and processes. A a

metal half-space covered with semiconductor with dielectric permittivity increasing

in the direction of the SPP propagation is considered in Sec. 2.2. Thin metal wedge

covered with dielectric where SPPs propagate toward the sharp edge is subject of

Sec. 2.6. The most energy-efficient of the graded systems considered below is a thin

metal cone embedded in a dielectric, which is a subject of Sec. 2.7.
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2.2. Adiabatic Stopping of SPPs at Interface of Metal with Graded

Semiconductor

Consider a semi-infinite metal occupying a half-space of z < 0, whose dielectric

function εm(ω) is uniform in space, where ω is the optical excitation frequency.

The upper half-space is occupied by a dielectric or undoped semiconductor whose

permittivity ε1(r) smoothly depends on the coordinates r = (x, y) in the plane (xy)

of the interface. Such spatial dependence is achieved, e.g., in the well-developed

semiconductor heterostructures. Using this smoothness, we will employ the eikonal

approximation,48 also called Wentzel-Kramers-Brillouin (WKB) or quasiclassical

approximation49).

We consider SPPs as transversally-magnetic (TM) waves. For such waves, the

magnetic field Hx at a plane interface between uniform metal and dielectric is given

by

Hx(y, z, t) = H
(0)
x exp (iky − κ|z| − iωt) , (1)

Ey,z(y, z, t) = E
(0)
y,z exp (iky − κ|z| − iωt) , (2)

where H
(0)
x and E

(0)
y,z are constant amplitudes of the corresponding field components;

k is the wave vector that is directed along the y axes, and κ is the corresponding

evanescent exponent. We are using the a definition of the coordinate system where

the interface is in the xy plane, and the normal to it is in the z direction. We

introduce a two-dimensional (2D) coordinate vector ρ in the interface plane with

the x and y components only. We assume that the permittivity of the dielectric is

a slowly varying function εd(ρ). The WKB solution for the in-plane magnetic field

is

H(r, z, t) = H0(r) exp {[−κ(r)|z| + ik0φ(ρ)] − iωt} , (3)

and κ is the local (at a given ρ) value equal to skin-depth exponent κm in the

metal and evanescent exponent κd in the surrounding dielectric (semiconductor).

The eikonal φ(ρ) is related to the effective index n(ρ) by the standard eikonal

equation48

[

∂φ(ρ)

∂ρ

]2

= n2(ρ) . (4)

Here, n(ρ) is the effective 2D refraction index of SPPs that is locally (at a given ρ)

given by an expression

n(ρ) =

[

εm(ω)εd(ρ)

εm(ω) + εd(ρ)

]
1
2

. (5)
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The exponents are given by

κm = k0

[

− ε2
m(ω)

εm(ω) + εd(ρ)

]
1
2

, (6)

κd = k0

[

− ε2
d(ρ)

εm(ω) + εd(ρ)

]

1
2

, (7)

The surface index n(ρ) has a singularity (branch-cut edge) at an SPP stopping

point in the complex plane of ω defined by an equation

εm(ω) + εd(ρ) = 0 . (8)

The real stopping points are given by a related equation

Reεm(ω) + εd(ρ) = 0 , (9)

beyond which the SPPs do not propagate. This equation in a general case at a

given ω defines a line (“caustic”) in the plane of ρ where the SPPs are stopped and

accumulated.

The adiabatic parameter is defined as the relative change of the SPP wavelength

at a distance of this wavelength,

δ =

∣

∣

∣

∣

∂

∂ρ

1

k0n(ρ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

k0n2(ρ)

∂n(ρ)

∂ρ

∣

∣

∣

∣

. (10)

For the eikonal approximation to be valid, this adiabatic parameter should be

small, which for the conventional optics would be violated at the stopping point.

However, for the SPPs at this critical point, δ is finite,

δ =

∣

∣

∣

∣

∂εd(ρ)

∂ρ

/

(

k0εm

√

Im εm

)

∣

∣

∣

∣

. (11)

Due to this finite value, δ can always be made arbitrarily small by choosing

small enough grading |∂εd(ρ)/ ∂ρ|. In such a case, in contrast to the conventional

quantum mechanics of massive particles, the eikonal (WKB) approximation is valid

in the entire space, including the stopping point and beyond. Mathematically, this

is due to the presence of losses that shift the exact stopping point from the real axis

into the complex plane. Physically, this means that close to the stopping point,

the SPPs accumulate but then they are absorbed, never actually reaching the true

singular point where the WKB approximation would have been violated. Close to

the stopping point, the group velocity of the SPPs is proportional to the distance to

this point; therefore the traveling time to reach this point diverges logarithmically.

This is a general properties of the adiabatic nanooptics of the SPPs at interfaces

that we will encounter over and over again for various graded plasmonic waveguides

described in the this Section below.

The SPP propagation losses decrease with decrease of Im εm, which can be

achieved by reducing excitation frequency ω. On the other hand, in that region,

|Re εm| becomes large. This implies that at the stopping point (9) the required
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permittivity of the dielectric is large, εd = −Re εm = 5− 15 for ω = 2− 3 eV. Such

values are typical for semiconductors, e.g., AlxGa1−xAs.50

0
0
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0
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-150
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y (nm
)

z (
nm
)

ε

Fig. 1. Spatial dependence of dielectric constant as a function of coordinates ρ = (x, y) in the xy
interface plane.

Below, in numerical illustrations, we set ω = 2.5 eV and reduced vacuum wave-

length λ = 1/k0 = 80 nm. As a metal, we consider silver as having the lowest

losses in the optical spectral region.51 As an example, we consider SPPs propagat-

ing along the y direction. Assume that the dielectric (semiconductor) component

possesses permittivity with a constant gradient of εdy = ∂εd/∂y in this direction,

as illustrated in Fig. 1.

Then the eikonal is a function of only y that be found analytically as

φ(y) = − 1

εdy

{

[εdεm(εd + εm)]

+
1

2
ε3/2

m ln
[

2εd + εm + 2ε
1/2
d (εd + εm)1/2

]}

, (12)

where εd = εd(y).

The pre-exponential H0(r) can be found from the conservation of the energy

flux utilizing the Pointing vector, which yields

H0 ∝
(

√

−εm/ε3
d −

√

−εd/ε3
m

)−1/2

. (13)

Close to the stopping point, this pre-exponential becomes large, describing enhance-

ment of the local field by a factor ∼ (|εm|/ε1)
3/4Q, where Q = −Reεm/Imεm is

the quality factor of the SP resonance. This enhancement describes the accumula-

tion of SPP’s at the stopping point. An instantaneous solution determined by Eqs.

(3)-(13) is shown in Fig. 2, where we can clearly see the stopping of SPP’s and the

corresponding field enhancement at y = 0. Due to the adiabaticity condition, the
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Fig. 2. In the vicinity of the stopping point, instantaneous value of optical electric field along the
propagation direction y. The solid line is for tangential electric field Ey and the dashed line is for
field Ez normal to the interface (the fields are in arbitrary but comparable units).

wave in Fig. 2(a) is not a standing one: it runs from the left to the right, toward the

stopping point, where it is not reflected back, but adiabatically stopped, enhanced,

and, further in space, absorbed.

The adiabatic parameter should not be too small, otherwise the stopping would

be slow and energy losses in the metal high [cf.: for the case of Fig. 2, δ ≈
0.1]. Therefore, this field of phenomena can be called rapid adiabatic nanooptics.

For the model under consideration, we assume that the dielectric (semiconductor)

permittivity is linearly graded at length L of the propagation interval; at the end

of this interval εd = |εm|. Thus ∂εd/∂y ≈ |εm|/L. Taking this into account, from

Eq. (12) we find that this rapidity limitation is

δ >

√
Im εm

|εm| . (14)

Substituting expression (11) for adiabatic parameter δ and adding the condition of

adiabaticity δ � 1, we can write a condition on the propagation length L of the

SPPs in the adiabatic nanooptics

|εm|
Im εm

& k0L � 1√
Im εm

. (15)

Here the right inequality expresses the condition of adiabaticity, and the left in-

equality describes the requirement of the rapidity. Note that it is possible to satisfy

this double inequality only of the quality factor of the SP resonance is high, i.e.,

|εm| � Im εm. We also estimate minimum size lm of the energy concentration

region as lm ∼ δλ; it is directly determined by the adiabaticity parameter.

In Fig. 3(a), we show the spatial distribution of local optical intensity I defined

as I(r) = |E(r)|2, which determines the rates of optical responses of the materials.

As the radiation propagates toward the stopping point, the local optical intensity

becomes dramatically localized at the metal-semiconductor interface, bound to a

layer of hight of < 10 nm at the stopping point (y = 0).
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Fig. 3. For graded dielectric, spatial distributions of the local optical intensity I (a) and optical
energy density W (b) (arbitrary units, linear density-coding scales). The distributions are shown
in the vertical cross-section (yz) plane.

We display the local optical energy density W

W (r) =
1

4π

{

Re
∂[ωε(r, ω)]

∂ω
|E(r, ω)|2 + |H(r, ω)|2

}

. (16)

in Fig. 3(b). The verttical (in yz plane) distribution of the energy is completely

different from that of the local field intensity, which is localized mostly in the dielec-

tric (semiconductor) component, except for the vicinity of the stopping point — cf.

panel (a). In contrast as panel (b) shows, the energy tends to localize in the metal.

The energy density has sharp nanofocus at the stopping point in all three dimen-

sions where it is localized in both the metal and semiconductor components. Thus

this graded semiconductor-metal interface system provides an efficient way to deliv-

ery the optical energy to nanoscale-size region of high-permittivity semiconductor

and metal, which may be useful in applications.

2.3. General Layered System

For the sake of convenience and self-containment, we will briefly summarize some

results regarding SPPs in layered systems. The problem of the SPP modes in media

consisting of metal and dielectric planar layers has been considered by Economou in

a pioneering paper.52 Here we present the corresponding theory in the appropriate

detail. We start below with a general layered planar system. In what follows, we

will consider a metal film embedded in dielectric.

Consider a general system containing N planar layers of materials with different

permittivities. We number these layers by an index i = 1, 2, . . . , N , with the cor-

responding layer permittivities denoted as εi. We position the coordinate system

as the following: the xy coordinate plane is parallel to the layers, and the z axis

is at the normal to these planes. We will always consider the first layer (i = 1) to

be infinite in the direction z → −∞, and the last layer (i = N) to be infinite in

the direction of z → ∞; the thicknesses of the remaining layers we denote as di,
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i = 2, . . . , N − 1. We assume that there exists at least one metal-dielectric interface

in this system that supports SPPs.

We seek SPP as a solution of the electromagnetic wave equations that is bound

to these layered system and has evanescent behavior in the infinite layers as a

transverse magnetic (TM) mode where the magnetic field in an ith layer has only

x component and is expressed as

H(i)
x (y, z) =

(

Aie
κiz + Bie

−κiz
)

eiky , (17)

where Ai, Bi, κi, and k are constants to be determined from equations and boundary

conditions. Substituting this in the wave equation, we obtain for each layer,

k2 − κ2
i = k2

0εi , (18)

where, to remind, k0 = ω/c.

The sign of κi is arbitrary, and we will define it imposing a condition Reκi > 0.

Under this sign definition, the condition of the evanescent behavior becomes

B1 = 0 , AN = 0 . (19)

Exactly as for the case of a single interface, the wave vector k is the same for all

the layers as follows from the continuity of Hx at the interfaces. For electric field,

the Maxwell curl equation yields

Ey =
i

k0εi

∂Hx

∂z
, (20)

From this, we obtain the parallel electric field component in an ith layer as

E(i)
y (y, z) =

κi

εik0

(

Aie
κiz − Bie

−κiz
)

eiky , (21)

and for the normal (transverse) component a general equation is valid:

Ey = ∓ iκi

k0εi
Hx , (22)

The normal component is given by a general equation

Ez =
k

k0εi
Hx , (23)

form which it follows that it copies the magnetic field.

Now let is determine the number of degrees of freedom (i.e., the difference be-

tween the number of unknown variables and the number of independent equations)

for the system of equations that we obtain. The Maxwell boundary condition re-

quire the continuity of Hx and Ey at each of the N − 1 interfaces in the system,

which supplies 2(N − 1) equations. Plus, there are N wave equations (18). Thus,

overall we have 3N−2 equations. Among the unknown variables, there are 2(N−2)

amplitudes Ai and Bi in the finite layers (i = 2, . . . , N−1), plus two amplitudes (A1

and BN ) in the semi-infinite layers, plus N evanescent exponents (κi), plus the wave

vector k. Overall, this sums up to 3N −1 variables. Subtracting the number 3N−2
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of equations from this, we conclude that there is one degree of freedom. This has

an absolutely clear meaning. The linear system of equations for the amplitudes Ai

and Bi, which is obtianed by applying the continuity boundary conditions for fields

(17) and (17), does not define the total magnitude of the fields for a SPP mode, but

only relative amplitudes. Therefore one of these amplitudes is undetermined, and

the rest of them are expressed in terms of that one. This situation is characteristic

of any linear eigenmode problem.

Eliminating the evanescent exponents κi in terms of the wave vector k from

the boundary conditions, we obtain a linear system of equations for amplitudes Ai

and Bi. For this system to have a nontrivial solution, its determinant should be

zero, which gives a characteristic equation for the wavevector k. To be specific, we

consider below in this Section a three-layer system where the thickness of the mid

layer is d. Carrying out the above-described procedure, we immediately obtain the

characteristic equation in a form

exp (2k0 d ε2 u2) =
(u1 − u2)(u3 − u2)

(u1 + u2)(u3 + u2)
, (24)

where we introduced for each layer a quantity ui according to the definition

ui =
1

εi

√

(

k

k0

)2

− εi ≡
κi

k0εi
. (25)

Note that Eq. (24) defines a relation between k and ω, where k enters the problem

explicitly through coefficients ui, and ω enters both through parameter k0 and the

frequency dependence of dielectric permittivities εi.

By an identity transformation, transcendental Eq. (24) can be given another,

equivalent form, which may be more convenient in some analytical or numerical

computations,

tanh (k0 d ε2 u2) = −u2(u1 + u3)

u2
2 + u1u3

. (26)

For the sake of reference, we give the expressions for non-zero coefficients Ai

and Bi that define SPP electromagnetic fields:

A1 = 2 exp [−1

2
k0d(u2ε2 + u3ε3)]u2(u2 − u3) ,

A2 = exp [−1

2
k0d(u1ε1 + u3ε3)](u1 + u2)(u2 − u3) ,

B2 = exp [−1

2
k0d(u1ε1 − 2u2ε2 + u3ε3)](u1 + u2)(u2 + u3) ,

B3 = 2 exp [−1

2
k0d(u2ε2 − u1ε1)]u2(u1 + u2) , (27)

We remind that these equations provide only the relative magnitudes of the coeffi-

cients; there is also an undetermined general factor that depends on the intensity

and phase of the physical SPP wave.
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2.4. Symmetric Layered system

There is especial interest in the symmetric three-layer system where the two semi-

infinite layers are made of the same material (metal or dielectric), and the middle

layer is of a different material (dielectric or metal, respectively). Physically, the

special place of such systems is due to the fact the SPP at the two interfaces 1− 2

and 2 − 3 have exactly the same frequency (spectral degeneracy). Therefore they

strongly interact and mix (hybridize). The problem solution is facilitated by the

appearance of an exact symmetry: parity. With respect to reflection in the plane

of symmetry, which we for certainty assume to be at z = 0, the fields are either

even or odd functions of z. It can be shown that Ez and Hx have always the same

parity with respect to the z reflection, and Ey has opposite. It is conventional to

associate the parity of a SPP mode with that of Ez . The even SPPs are also often

called symmetric, and the odd ones antisymmetric.

For a symmetric system, ε1 = ε3, and the characteristic equation (26) simplifies

to acquire a form

tanh (k0 d ε2 u2) = − 2u1 u2

u2
1 + u2

2

. (28)

To better understand properties of the corresponding solutions and their relation to

parity, we re-derive the corresponding characteristic equation from the very begin-

ning using the parity as a good quantum number. Starting with the even (symmet-

ric) SPPs, we impose a specific boundary condition at the symmetry plane z = 0,

Ey|z = 0 = 0 . (29)

After that we only use boundary conditions of the continuity of Ey and Hx at

the 1 − 2 interface (the conditions at the 2 − 3 interface are redundant), which

following the procedure described above in Sec. 2.3 brings about a characteristic

equation

tanh (
1

2
k0 d ε2 u2) = −u1

u2
(30)

describing only the even (symmetric) SPPs.

Similar derivation can immediately be effected for the odd SPPs, which satisfy

the boundary condition at the symmetry plane

Hx|z = 0 = 0 . (31)

This leads to the characteristic equation

tanh (
1

2
k0 d ε2 u2) = −u2

u1
, (32)

which specifically describes only the odd (antisymmetric) SPP modes.

To compare these defined-parity characteristic equations (30) and (32) with

generic Eq. (28), we invoke a hyperbolic trigonometry identity

tanh 2θ =
2 tanh θ

1 + tanh2 θ
. (33)
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From this, setting in the left hand side of Eq. (28) θ = 1
2 k0 d ε2 u2, we immedi-

ately see that the solutions of Eqs. (30) and (32) satisfy Eq. (28) automatically.

Thus these two definite-parity characteristic equations together are equivalent to

the generic equation (28).

Equivalent characteristic equations with the exponentials in the left-hand sides,

which may be more convenient in some cases, are

exp (k0du2ε2) = ∓u1 − u2

u1 + u2
. (34)

The corresponding non-zero coefficients of fields (17), (21), and (23) are

A1 = ±B3 = u2 , A2 = ±B2 =
1

2
exp

[

1

2
k0d (u2ε2 − u1ε1)

]

(u1 + u2) . (35)

In these expressions, the upper sign refers to the symmetric SPPs and the lower

sign to the antisymmetric SPPs.

2.5. Adiabatic SPP Concentration in Quasistatic Regime

In the case of a plasmon polaritonic waveguide whose size (in the direction normal

to the SPP propagation) is graded, properties of the adiabatic concentration of opti-

cal energy can be described in a quite general form applicable to various waveguide

geometries. This is possible due to the fact that in the limit where the SPP re-

duced wavelength along the propagation direction k−1 becomes much smaller than

vacuum reduced wavelength λ, the behavior of the SPPs becomes universal. Their

wavelength k−1 is so small that λ is irrelevant. In such a case, k−1 is determined

by and on order of the normal size of the waveguide which is on the nanoscale, i.e.,

much smaller tham λ. Because λ disapears from the solution, so does also the speed

of light. Hence, the solution becomes quasistatic. All the quantities of the dimen-

sionality of length become on order of normal waveguide size d. Such universality

allows one to present a general, universal description based on this scaling.

Consider a plasmon polaritonic waveguide where a SPP can propagate in one

dimension (in our convention along the y coordinate) but is restricted in the normal

direction by a size, which we assume to be on the nanoscale. For instance, for a

metal nanolayer embedded into dielectric or dielectric nanolayer embedded into

metal this size is by order of magnitude is the thickness d of the nanolayer and on

the same order as the reduced wavelength k−1 of the SPPs. A SPP solution for

such nanolayers is quasistatic: the magnetic component of the electromagnetic field

is much smaller than the electric component.

We consider the thin metal or dielectric layers and similar systems for which

there is no cut off: the SPP excitation branch exists for d arbitrarily small (limited,

however, by Landau damping to d & vF /ω). Then the properties of the adiabatic

concentration can be established in a quite general form.

We will consider systems where the dielectric losses of the SPPs are not too large.

Then in the first approximation, the energy of the SPPs is conserved, and so should
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be its total flux. In what follows, we will not be interested in specific coefficients but

will trace only the scaling with the layer thickness d. The conservation of energy is

reflected in the conservation of the energy flux as

vg

∫

E2dxz = const , (36)

where we remind that vg is the group velocity. Because the only relevant param-

eter of the problem with the dimensionality of length is d (the radiation vacuum

wavelength is many orders of magnitude too large), then the group velocity asymp-

totically (for nano-thin systems) scales as

vg ∝ d . (37)

We will consider two type of systems: (i) thin layers, which provide one-

dimensional (1d) confinement of the fields, and (ii) cones or prisms, which provide

the pwo-dimensional (2d) confinement. Correspondingly, the integral in Eq. (36)

can be estimated as |E|2dν , where ν = 1, 2 is dimensionality of the waveguide, as

discussed above. From this, taking (36) and (37) into account, we obtain the scaling

of the electric field inside the polaritonic waveguide with its characteristic size d as

E ∝ d−
1+ν
2 . (38)

The wave propagation in the WKB approximation is described by the eikonal

φ =
∫

k(y) dy, where k(y) is the wave vector at the coordinate y along the waveg-

uide. The universal quasistatic scaling for the nano-thin waveguides implies that

k is inversely proportional to the only relevant parameter of the problem with the

dimensionality of length, which is d, i.e.,

k(y) =
ka

d(y)
, (39)

where ka is a complex constant, and d(y) is the waveguide grading, i.e., the depen-

dence of its thickness on the longitudinal coordinate y. As a result, both the phase

velocity and group velocity of the SPPs scale with nanolayer thickness as

vp =
ω

Re ka
d , vg =

(

∂Re ka

∂ω

)−1

d . (40)

This scaling along with Eq. (38) brings about the dependence of the field along the

waveguide as

|E| ∝ d−
1+ν
2 exp

[

−Im ka

∫

dy

d(y)

]

. (41)

Assuming for simplicity a constant grading of the waveguide, d′ = ∂d/∂y =

const,

|E| ∝ d−
1+ν
2

− Im ka
d′ . (42)
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This is a very general result that follows from scaling properties of the quasistatic

solution. Interestingly enough, it shows that the field increases along the waveguide

if the grading exceeds a certain critical value,

−d′ > 2
Im ka

1 + ν
. (43)

From Eq. (42), it follows that field intensity I and energy density W also asymp-

totically obey a universal scaling

I ∝ W ∝ d−(1+ν)−2 Im ka
d′ . (44)

Note that −d′ > 0, and that the the adiabatic parameter

δ = |d(k−1)

dy
| =

1

ka
|d′| . (45)

This parameter is finite along the entire waveguide including its apex. Thus the

WKB can be applicable for the entire system, in contrast to the quantum mechanics

where it is violated at the stopping (turning) points. It is important to understand

how this situation can take place. The answer is in the travel time needed for the

SPPs to reach the apex that plays the role of such a stopping point. This travel

time Tt for SPPs at an initial coordinate point yi to the final coordinate point yf is

Tt =

∫ yf

yi

dy

vg
∝ ln

yi

yf
, (46)

where we took into account scaling (37) and assumed for simplicity a constant

grading, i.e., d′ = const. It is obvious that Tt logarithmically diverges for yf → 0.

This implies that it takes SPPs infinite time to travel to the apex, which is a singular

point. This is the underlying reason why the WKB solution is valid for the entire

waveguide.

Because ka is a (complex) constant whose modulus is on order of 1 [see, e.g.,

Eq. (48)], the adiabaticity condition δ � 1 reduces to |d′| � 1. We aslo see that in

this asymptotic regime, the adiabatic parameter is always finite. Also, the “‘best”

solution is such that the adiabatic parameter is as large as possible compatible with

the adiabaticity, because it minimizes the propagation time and, correspondingly,

the dielectric losses. But this also implies that this parameter should be constant

in the asymptotic region (k ∼ d−1 � k0); the grading, correspondingly, should also

be constant, d′ = const.

For the graded waveguide in the shape of a wedge or a cone, −d′ = tan θ, where

θ is the angle at the tip of this wedge or cone. Thus condition (43) shows that the

grade angle θ of the waveguide should be large enough,

θ > θmin = arctan

(

2
Im ka

1 + ν

)

. (47)

If condition (43) or (47) is violated, then the fields in the waveguide will

monotonously decay along the waveguide. If the losses in the waveguide are large,

this inequality or (43) may contradict to the adiabaticity condition |d′| � 1.
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Fig. 4. Minimum grading angle θmin (degree) at which the adiabatic concentration causes in-
crease of SPP field toward the tip of the plasmon polaritonic waveguide. This angle is displayed as
a function of the SPP frequency (eV). The calculations are applicable to a wedge-shaped nanolayer
of metal in dielectric or dielectric nano-wedge in metal. The metal is silver (a) and gold (b). Di-
electric permittivity εd = 1 (solid curves) and εd = 3 (dashed curve). Each curve is shown within
the spectral range of the existence of the corresponding SPP mode, i.e., for ω ≤ ωsp.

The value of ka depends on the specific model. For instance, for a nano-thin

metal layer in dielectric environment or nanolayer of dielectric embedded in a metal,

we obtain

ka = ln

[

εm(ω) − εd

εm(ω) + εd

]

. (48)

This expression is valid for the symmetric SPPs in the case of the dielectric nanolayer

in metal and for the antisymmetric SPPs for the case of the metal nanolayer in

dielectric (the modes of the opposite symmetry in each of these two cases are highly

lossy and will not be considered). Note that because Re εm + εd < 0, the real part

of the argument of the logarithmic function is positive. Therefore, Im ka originates

only from the existence of Im εm, i.e., from the dielectric losses in the metal, which

is natural to expect.

We show in Fig. 4 dependence of minimum angle θmin on frequency of SPPs for

both vacuum and a dielectric with εd = 3 for silver and gold as a metal. To remind,

the adiabaticity condition requires tan θmin � 1, so the value of θmin should not be

large. One can reasonable assume that a value acceptable from the requirements of

adiabaticity is θmin . 20 deg. This is satisfied for silver in wide frequency range of

the near-ir and entire visible spectrum, ~ω ≤ 3.1 eV; for vacuum this condition is

actually more relaxed. In contrast, for gold the adiabaticity requirement is stronger,

leading to ~ω ≤ 2.1eV , thus limiting to the near-ir and red-yellow spectral region.

The reason for this difference is the ds band absorption in gold that is in the green-

blue spectral region, while for silver it is in the near uv.

Let us note that formally the results presented above are valid for all types of

SPPs in symmetric planar waveguides: even or odd. However, in the region of high

k, the frequencies of the even (symmetric) modes for the metal nanolayer guide

and of the odd (antisymmetric) modes for the dielectric nanolayer guide are high,

leading to high losses and, correspondingly, to large values of θmin that contradict

to the adiabaticity. Thus, the results presented above in this Section are valid for
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Fig. 5. The same as in Fig. 4 but for nanocone as a SPP waveguide, for TM0 mode. Angle θ in
this case is an angle between the cone axis and its surface.

and applicable to the lower frequency SPP modes. These “good” modes are the odd

(antisymmetric) SPPs in the metal nanolayers and the even (symmetric) modes in

the dielectric nanolayer in the metal waveguides.

Another system of interest is a metal conical (tapered cylinder) waveguide in-

troduced in Ref. 10 — see also Sec. 2.7. In this case, as a measure of the transverse

size of the waveguide d we choose the local cone radius R that depends on the lon-

gitudinal (along the propagation direction) coordinate z. The formulas given above

in this Section apply with the substitution d → R and for ν = 2. However, the

value of coefficient ka for a TM0 SPP mode in a tapered cylinder changes to10

ka = 2







εd

εm(ω)

1

ln
[

εd

4εm(ω)

]

+ 2γ







1/2

, (49)

where γ ≈ 0.577216 is the Euler constant. Note that this analytical expression is an

approximation valid in the long-wavelength portion of the optical spectrum where

−εm(ω) � εd.

Using this function in Eq. 47, we have obtained the spectral dependence of

minimum angle θmin for which the adiabatic increase of the SPP field intensity in

the direction of the cone tip will take place. For smaller angles, the linear losses

in the metal will overcome the adiabatic concentration and the SPP intensity will

monotoneously decrease along the cone. Such dependences for silver and gold are

displayed in Fig. 5.

First, we note that these dependences for the nanocone are remarkably similar,

practically identical to the corresponding dependences for metal nanowedges — cf.

Fig. 4. This is despite the fact that the underlying coefficients ka, which solely

define these spectral dependences, are utterly different by form — cf. Eqs. (48) and

(49). Take into account, however, that angle θmin in Eq. (48) is the full angle at

the tip of the wedge, while in Eq. (49) it is the angle between the cone axis and its

surface, i.e., the half of the full constituent angle at the tip of the cone.

Returning to Fig. 5, for the case of the cone, the same as for the wedge, the silver

provides much better a system where the plasmonic concentration can be expected
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for smaller angles in a wider spectral range. For gold, the required minimum angle

increases dramatically toward the 2.2 eV edge of the ds band absorption, which

dramatically limits its usefulness. Note that large required angles contradict to the

adiabaticity requirement tan θ � 1.

In conclusion of this Section, we discuss the limits of the adiabatic energy con-

centration in SPP waveguides. The optical losses, as we discussed above is the most

important limiting factor within the macroscopic local electrodynamics that limits

the efficiency of the energy delivery to the nanoscale. It also limits the minimum an-

gle for which the field enhancement at the tip of the waveguide occurs and can make

the adiabatic regime unattainable whatsoever — see the discussion of Eqs. (48) and

(49). Important limiting effects that become important at the small scale are the

spatial dispersion of the dielectric responses and Landau damping. These effects

are described by spatially dispersive, nonlocal dielectric function. Though there has

been some work done on the nonlocal effects in the adiabatic SPP concentration,53

this area is still mostly unexplored.

On a qualitative level, the nonlocality of the dielectric responses and Landau

damping become important when the localization size of the SPPs becomes on order

of the correlation length associated with the Fermi velocity vf of electrons. Because

in the adiabatic following regime, this localization length is on order of local size d

of the waveguide, then the condition that these effects are important is

d ∼ k−1 . vf/ω . (50)

In practical terms, in the optical region the effects of Landau damping and dielectric

nonlocality become important for d of order of a few nanometers. This critical size

increases when the frequency decreases toward the red and infrared spectral region.

There are also other phenomena limiting the adiabatic energy concentration on

the nanoscale, which become important when the size of the waveguide d becomes

very small, that can only be described in a fully microscopic theory. These are

electron spill out and the related underscreening. These effects have recently been

considered for the problem of the surface enhanced Raman scattering (SERS) in

the framework of the local density approximation (LDA) of the density functional

theory (DFT).54–58 The application of this or other microscopic methods to the

problem of the adiabatic transformation and concentration of the optical energy on

the nanoscale is still ahead.

2.6. Adiabatic SPP Stopping in Metal Wedge

In this Section we consider the adiabatic transformation and concentration of en-

ergy in a metal wedge embedded in dielectric media. We start with a symmetric

problem: the embedding dielectric is uniform. In this case, the SPP modes are

characterized by parity. Inspection of the corresponding dispersion relations for

the even (symmetric) and odd (antisymmetric) SPPs (30) and (32) shows that it is

the antysymmetric mode that has velocity that decreases when the layer becomes
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Fig. 6. (a) For a silver nanofilm in vacuum, dependence of the real part of the SPP effective
refraction index, Re k/k0, on the layer thickness d (solid line). The same dependence for the
imaginary part of the SPP index, Im k/k0, is displayed by the dashed line multiplied by a factor

of 10. (b) Dependence of the SPP wavelength, λSP = 2π/Re k. The dependences are calculated
for the antisymmetric mode of frequency ω = 3.1 eV.

thin, which is the prerequisite for the adiabatic following by the SPPs of the layer

thickness.

Correspondingly, the starting point of our consideration is the characteristic

equation for the antisymmetric SPPs (32). It provides the antisymmetric SPP

dispersion relation as a complex function k(ω, d) of frequency and the metal layer

thickness. As an example, we show in Fig. 6 (a) the dependence of the wavevector

on the layer thickness for a silver nanolayer in vacuum. Note that the ratio n = k/k0

that is shown in the graphs is the effective refraction index for the antisymmteric

SPPs. As we see from this figure, both the real and imaginary part of this effective

index increas when the layer thickness is in nanometer range and decreases. As

we know from the general scaling theory of the adiabatic following presented above

in Sec. 2.5, this dependence is n ∝ 1/a — see Eq. (39). This scaling should take

place for the local wedge thickness less or on order of the skin depth in the metal,

d . ls ∼ 20 nm. Such a behavior is actually in a very good agreement with the

curves in Fig. 6.

The imaginary part of the wavevector, as we see from Fig. 6 (a) is small relative

to its real part, Im k/Rek . 1
20 − 1

30 . Thus the antisymmetric SPPs remain good

propagating waves for even for very thin nanolayers. This relatively weak decay and

their high index makes them useful for ultramicroscopy. The resolution (both in-

plane and out-of-plane) that can be obtain with such modes is determined by their

wavelength λSP displayed in Fig. 6 (b). For instance, for the wedge tapered down

to 4 nm, λSP ≈ 30 nm, which is in agreement with the scaling of their reduced wave

length λSP ∼ d/ka ∼ d. The corresponding resolution is ∼ 15 nm. It is sometimes

called an “X-ray resolution at optical frequencies”.

From the dispersion relation, one can calculated the phase velocity and group

velocity of the SPP. They are shown in Fig. 7 (a) as function of the nanolayer

thickness. The phase velocity for relatively thick nanolayers (d � ls) is close to

speed of light, while the group velocity is significantly less than that. For thin
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Fig. 7. (a) For silver wedge in vacuum, displayed as functions of wedge local thickness d plotted
are: phase velocity vp (solid curve), group velocity vg (dashed curve), and adiabatic parameter δ
multiplied by a factor of 10 (dash-dot curve); (b) Dependences of intensity I on the vacuum side of
the silver surface and energy density W on its metal side as a function of the wedge local thickness
d. The results of WKB theory are shown by solid lines, and those of the scaling approximation
are denoted by the dashed lines. Note the double logarithmic scale.

nanolayers (d . ls), both these velocities tend to zero proportionally d, in accord

with the general scaling (40). Thus, the adiabatic following of the nanolayer by

the SPPs provides an efficient (with relatively low losses) wide-band approach to

obtaining the “slow light”.

The adiabatic parameter δ (multiplied for the sake of the readability by a factor

of 10) is also shown in Fig. 7 (a). It is finite in the entire region of propagation,

including the vicinity of the stopping edge, in acord with the scaling law (45). This

examples uses grading of the wage d′ = −1/30. For this value of grading, the

WKB parameter is small even at the edge, δ ≤ 0.07. Correspondingly, the WKB

approximation is valid for the entire system.

Now let us consider the fields. The WKB solutions can be obtained from the ex-

act expressions by multiplying them by the corresponding exponential of the eikonal,

exp(iφ) and a pre-exponential ∝ J−1/2, where J is the energy flux that allows one to

satisfy the energy conservation condition. We give below the corresponding expres-

sions explicitly in the general case, without assuming that the system is symmetric.

For layer 1, which is the semiinfinite (z < 0) dielectric underlying the metal wedge,

we have

H(1)
x =

1√
J

A1 exp [κ1z + iφ(y)] ,

E(1)
z =

1√
J

k

k0ε1
A1 exp [κ1z + iφ(y)] ,

E(1)
y =

1√
J

κ1

k0ε1
A1 exp [κ1z + iφ(y)] , (51)

where eikonal

φ(y) =

∫

k(d(y))dy , (52)
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and k = k(d) is a function of the local thickness d, and so is κ1 = κ1(d) as given by

the general relation (18), where, by definition, k0 = ω/c.

For layer 2, i.e., the metal wedge d(y) ≥ z ≥ 0, the solutions are

H(2)
x =

1√
J

[A2 exp (κ2z) + B2 exp (−κ2z)] exp [iφ(y)] ,

E(2)
z =

1√
J

k

k0ε2
[A2 exp (κ2z) + B2 exp (−κ2z)] exp [iφ(y)] ,

E(2)
y =

1√
J

κ2

k0ε2
[A2 exp (κ2z) − B2 exp (−κ2z)] exp [iφ(y)] . (53)

Finally, the fields for the semi-infinite upper dielectric layer 3 (z > d(y)) are

H(3)
x =

1√
J

B3 exp [−κ2z + iφ(y)] ,

E(3)
z =

1√
J

k

k0ε1
B3 exp [−κ3z + iφ(y)] ,

E(3)
y =

1√
J

κ3

k0ε3
B3 exp [−κ3z + iφ(y)] , (54)

The coefficients of these equations can be found in general case, but they are cum-

bersome and we do not display them.

The WKB recipe to find the pre-exponential 1/
√

J is the following. At the first

stage one neglects the imaginary part of the eikonal. Fields (51)-(54) should then be

used to compute the energy density (16). Finally, energy flux J , which determines

the pre-exponential, is computed as

J(y) = vg

∫ ∞

−∞

W (y, z)dz . (55)

As everywhere, vg = ∂ω/∂k is the group velocity [see a numerical illustration in

Fig. 7 (a)], which depends on the local thickness d = d(y).

As a result of elementary but bulky computations, we obtain

J = vg

{

k0 |A1|2
2Reκ1

(

1 +
|k|2 + |κ1|2

k2
0ε1

)

+

k0

2Reκ2

[

1 + Re

(

∂ωε2(ω)

∂ω

) |k|2 + |κ2|2
k2
0ε2

]

×
{

|A2|2 [exp (2Re κ2d) − 1] + B2|2 [1 − exp (−2Reκ2d)]
}

+

k0

Im κ2
Re

(

∂ωε2(ω)

∂ω

) |k|2 − |κ2|2

|k2
0ε2|2

Im {AB∗ [exp (2iImκ2d) − 1]} +

k0 |B3|2
2Reκ3

(

1 +
|k|2 + |κ3|2

k2
0ε3

)

[1 − exp (−2Reκ3d)]

}

. (56)

Substituting this into the expressions for fields (51)-(54) and computing eikonal

(52) by numerical integration, we obtain the required WKB solution. Note that the
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Fig. 8. Local electric fields of SPP antisymmetric mode with frequency ω = 3.1 eV where panel
(a) displays normal field Ez , and panel (b) shows the longitudinal field Ey. The wedge material
is silver, and the embedding medium is vacuum. The wedge’s slope tangent is tan θ = 1/30.

fields (51)-(54) should be multiplied by a common normalization multiplier that

defines the energy of a specific solution.

Returning back to Fig. 7 (b), we compare the local field intensity I and energy

density W of an SPP mode obtained from this solution with the scaling prediction

(44) for a silver nanowedge with grading d′ = −1/30, which is well over the critical

value needed for the adiabatic concentration to take place. The only adjustable

parameter in such a comparison is the mode normalization coefficient mentioned

above in the previous paragraph. Note that these quantities are displayed as func-

tions of the local metal wedge thickness d. The scaling agreement is very good for

W in the asymptotic region, i.e. for d significantly less than skin depth ls ≈ 25 nm

of the metal, as expected. What is surprising, the local intensity on the outside

surface of the metal scales almost perfectly in the entire region.

The distributions of the local electric fields in the plane normal to wedge surface

in the direction of propagation is shown in Fig. 8 for a silver nanowedge with

d′ = −1/30. These distributions demonstrate well the general qualitative properties

of the adiabatic transformation and concentration of energy on the nanoscale. For

the wedge thickness large enough, d � ls, which is the case in the left-hand side

of the panels, the fields are delocalized outside the metal at distances greater than

the wavelength in vacuum; the normal field, Ez, inside the metal is weak. This

behavior is similar to skin effect in a semi-infinite metal. In this region, the SPP

wavelength in the direction of propagation is smaller than the vacuum wavelength

but still is on the microscale rather than on the nanoscale. As the SPPs propagate

toward the edge (to the right in the figure), the local thickness of the wedge becomes

comparable with the skin depth, and then the adiabatic following sets on. Both the

wavelength in the propagation direction and the evanescent length at the normal to
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Fig. 9. For antisymmetric SPP mode of silver wedge in vacuum, distributions in the normal plane
of propagation (yz) of local field intensity I (a) and energy density W (b). Frequency is ω = 3.1
eV, wedge material is silver. Color coding bars are shown to the right of the plots along with the
corresponding scales.

the surface become on order of the local wedge thickness. This nanolocalization is

accompanied by a sharp increase in the amplitude of the fields as the SPP approach

the edge in the right-hand side of the panels. Also, in this region, the skin effect

becomes inefficient: the entire thickness of the metal is filled with the fields.

Now let us turn to the spatial distribution of the local electric field intensity

defined here as

I(y, z) = |Ez(y, z)|2 + |Ey(y, z)|2 . (57)

This distribution in the plane of propagation normal to the interfaces (the yz plane)

is displayed in Fig. 9 (a). Here we can clearly see that at the widest part of the

wedge, where its thickness significantly exceeds the skin depth, the fields are delo-

calized in the normal plane at micrometer-scale distances. The thin skin layers at

the surfaces and low field area in the middle of the wedge are clearly evident. As

the SPPs propagate toward the edge (to the right in the figure), their fields become

more localized at teh surfaces and start to penetrate the bulk of the metal. When

the adiabatic following is fully developed (for y & 1.5µm), the entire cross section

of the metal is uniformly filled with the fields and their localization length outside

of the metal is comparable with the local thickness of the wedge. This is in the full

qualitative agreement with the picture produced by the scaling theory — see Sect.

2.5. In the process of propagation toward the edge, the intensity at the outer surface

of the metal (where it is maximum) is increased by a factor of ∼ 10 [corresponding

to the change of the coding (false) color in the plot from light blue to intense red].

Consider the adiabatic concentration of energy density W (y, z) (16) illustrated

in Fig. 9 (b). In contrast to the intensity that is mostly localized in the dielctric

component (vacuum in this case) [cf. panel (a)], the energy density is much more

concentrated in the metal due to the high magnitude of the metal dielectric permit-

tivity. When the SPPs propagate toward the sharp wedge, the metal wedge becomes

uniformly filled with the electromagnetic energy density. Toward the wedge, within
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the range of the plot, the energy density increases by more than a factor of 10.

Thus the metal wedge is an efficient conductor and adiabatic concentrator of the

SPP energy.

It is of interest to evaluate qualitatively what is the fraction of the electromag-

netic energy flux propagating in the metal (to be denoted below as Jm) with respect

to that propagating in the dielectric (to be denoted as Jd). It is most interesting

and also easiest to do in the quasistatic regime (for this specific plot, such a regime

is established for y & 1 µm).

In the quasistatic regime, the field coefficients can be found in a simplified form.

From these, we immediately obtain expressions for the electric fields (the magnetic

field in the quasistatic regime is small by parameter k0/k and can be neglected).

For the embedding dielectric, we obtain

Ez(y, z) = Ey(y, z) = ±εm exp [−k|z|+ iφ(y)] , (58)

where signs ± refer to the upper and lower half spaces. For the metal wedge, we

obtain

Ez(y, z) = (εd + εm) sinh (kz) exp [iφ(y)] ,

Ey(y, z) = (εd + εm) cosh (kz) exp [iφ(y)] . (59)

Reminding again, there is an arbitrary normalization coefficient that these eigen-

mode fields should be multiplied by to obtain observable, physical fields, which

defined the total phase and intensity of the SPP.

With these fields, it is easy to find the ratio of the electromagnetic energy fluxes

in the metal and dielectric

Jm

Jd
=

∫ d/2

0
W (y, z)dz

∫∞

0 W (y, z)dz
. (60)

Computing this ratio, one can safely neglect a small imaginary part of the metal

dielectric function. We obtain a simple, closed expression

Jm

Jd
= − 1

εm

∂ [ωε(ω)]

∂ω

(εd + εm)
2

(εd − εm)2
. (61)

Note that this ratio does not depend on local thickness d of the wedge, as expected

in the asymptotic quasielectrostatic regime. Numerical evaluation of this ratio for

the present system shows that in the entire plasmonic range, between 1 and 3 eV,

this ratio varies very little, just between 0.9 and 1.6. Thus, the electromagnetic (or,

rather, quasielectrostatic) energy is split approximately equally between the metal

and dielectric components of the plasmonic waveguide. Note that typically in the

plasmonic region |εm| � εd. In such a case, Eq. (61) further simplifies

Jm

Jd
= − 1

εm

∂ [ωε(ω)]

∂ω
. (62)

This expression does not depend on the dielectric at all, and it is numerically very

close to 1 for silver.
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Fig. 10. Same as in Fig. 9 but for an asymmetric nanowedge SPP waveguide: ε1 = 3, and ε3 = 1.

Returning to Fig. 9 (b), we note that the graphics renditions visually overesti-

mates the fraction of the optical energy propagating in the metal, which appears to

be significantly greater than 1. This is due to the fact that the dielectric fields are

spread over the two (upper and lower) semi-infinite dielectric regions, and also in

both of these regions they are delocalized somewhat greater than the fields in the

metal. In teh actuality, as we know from Eqs. (61) and (62), the SPP optical energy

in the quasielectrostatic regime propagates in approximately equally fractions in the

metal and dielectric constituents of the waveguide.

Finally, it is of significant interest to consider an asymmetric SPP waveguide

constituted by a metal wedge surrounded on both sides by different dielectrics. In

particular, this is a case for the metal wedge on a dielectric substrate surrounded

by vacuum.

Qualitatively, the underlying physics of the SPP adiabatic energy transformation

and concentration is somewhat different from the symmetric case. In the present

case, for a thick (d � ls) portion of the wedge, the SPP propagating at the lower and

upper interfaces for the same ω have different wave vectors and very weakly interact

and hybridize with each other (i.e., it is a case of weak coupling). The situation

changes for d . ls when the coupling and mixing of the SPPs at both the interfaces

become strong. In this case, we select the high-k mode that is asymptotically (for a

very strong coupling) antisymmetric, slow SPP branch. This one provides the best

adiabatic control and concentration of energy.

The distribution of the local field intensity for such a slow SPP mode in the

normal plane of propagation (the yz plane) is illustrated in Fig. 10 (a) for ε1 = 3

(a typical glass), ε3 = 1 (vacuum), and silver as the metal. As we see from the

figure, the mode selected is initially (in the left-hand side of the figure) localized

predominantly at the lower (metal/dielectric) interface and is mostly a SPP at the

interface of the semi-infinite silver and the dielectric (glass). As it propagates to

the right (toward the edge) it does become much more concentrated in space with

the localization length on order of a few nanometers. However, this localization is

not accompanied by an enhancement in its intensity. In fact, this intensity decays
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by a factor of ∼ 10 due to the losses. This is due to the much smaller component

of the adiabatically-controlled odd mode in this SPP because of the much weaker

coupling between the two interfaces.

The behavior of the optical energy density in this system is illustrated in Fig. 10

(b). In contrast to panel (a), the energy is much more concentrated in the metal,

similar to what takes place for the symmetric wedge waveguide discussed above in

conjunction with Fig. 9. The energy density actually decays significantly less than

the local field intensity due to its better localization: along the propagation pass it

is attenuated only by a factor of ≈ 3. Thus even an asymmetric SPP waveguide is

an efficient adiabatic concentrator of optical energy.

2.7. Adiabatic Concentration and Stopping of SPPs in Tapered

Nanoplasmonic Cylinder

Consider a nanoplasmonic waveguide that consists of a metal nanowire whose axis

coincides with the coordinate z axis and whose dielectric function εm(ω) is uniform

in space, where ω is the optical excitation frequency. The radius R(z) of this

nanowire is a smooth function of z and is assumed to decrease from microscale for

z large negative to a nanoscale size at z → 0, as discussed above, see Fig. 11(a).

This wire is surrounded by a dielectric medium with dielectric constant εd. Using

the smoothness of dependence R(z), we will employ the eikonal approximation48

also called Wentzel-Kramers-Brillouin (WKB) or quasiclassical approximation in

quantum mechanics.49

We consider an axially uniform SPP mode that is a TM wave whose magnetic

field has the φ polarization, and electric field E has both transverse (radial) com-

ponent Er and longitudinal component Ez. In the eikonal (WKB) approximation,

this field has the form

E(r, z, t) = E0(r)A(z) exp[ik0ϕ(r) − iωt] (63)

where r is a two-dimensional (2D) vector in the xy plane, k0 = 1/λ, and A(z) is a

slow-varying pre-exponential factor, to be determined later in this Section. From the

Maxwell equations, using the corresponding boundary conditions at the interface,

for the SPP guided mode, we find the eikonal as ϕ = k0

∫

n(z)dz, where n(z) is the

effective surface index of the plasmonic waveguide at a point z, which is determined

by the equation

εm

κm

I1(k0κmR)

I0(k0κmR)
+

εd

κd

K1(k0κdR)

K0(k0κdR)
= 0 , (64)

where Ip and Kp (p = 0, 1 ) are the modified Bessel functions; the complex

decrements of the field in the metal and dielectric are: κm =
√

n2 − εm and

κd =
√

n2 − εd. This equation determines n as a function of the local wire ra-

dius R, which together with the grading dependence R = R(z) defines the required

effective index n(z). Under the conventional plasmonic condition Reεm < −εd,
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Eq. (64) has nearly real solutions corresponding to the propagating SPP’s. For

a thick wire (k0R � 1), the solution is, understandably, the same as for the flat

surface, n =
√

εmεd/(εm + εd). For a thin, nanoscale-radius wire (k0R � 1) with

logarithmic precision, we have

n(R) ≈ 1

k0R

√

−2εd

εm

[

ln

√

−4εm

εd
− γ

]−1

, (65)

where γ ≈ 0.57721 is the Euler constant. Note that at the tip n → ∞, and SPP’s

do asymptotically stop, i.e., both the phase velocity vp = c/n and group velocity

vg = c[d(nω)/dω]−1 tend to zero ∝ k0R for k0R → 0. The point R = 0 (or z = 0) is

an essential singularity. The time to reach this point ∝
∫

n(R)dR ∝ − ln(k0R) → ∞
diverges logarithmically.

The eikonal parameter (also called WKB or adiabatic parameter) is defined as

δ =
∣

∣R′d(k0n)−1/dR
∣

∣, where R′ = dR/dz is the wire grading. For the applicability

of the eikonal (WKB) approximation, it necessary and sufficient that δ � 1. At

the nanoscale tip of the wire, which is the critical site for the adiabaticity (eikonal

approximation applicability), from Eq. (65) we obtain

δ ≈
∣

∣

∣

∣

R′

√

− εm

2εd

[

ln

√

−4εm

εd
− γ

]
∣

∣

∣

∣

.

Thus, δ stays finite at the tip and can be made small enough by choosing sufficiently

small grading R′, so the eikonal approximation is valid for the entire wire waveguide,

including the stopping point at the tip. This conclusion does not rely or significantly

depend on Imεm (the optical losses in the system).

In our example, the tapered nanoplasmonic waveguide is a silver cone in vacuum

with R′ = −0.02; its angle of opening is 0.04 radian, as shown in Fig. 11(a). The

vacuum reduced wavelength of the excitation radiation is λ = 100 nm, which cor-

responds to red light of λ = 630 nm. The SPPs are efficiently excited at the wide

end of the waveguide nanowire by using, e.g., grating or Kretschmann59,60 geometry

and propagate to the tip as indicated. This propagation causes accumulation of the

SPP energy at the tip and the corresponding increase of the local fields by more

than three orders of magnitude. As shown in Fig. 11 (b), the intensity of the local

optical field is sharply concentrated in 3D in a nanolayer at the surface of the metal,

which is a signature of SPPs. In this figure, as everywhere in this Section, we show

all lengths in units of λ, so the sizes range from the micro- to nanoscale. The hot

spot of local fields is created in a nanosize region at the very tip. If it were not a

plasmonic nanowire waveguide, but the conventional tapered optical fiber support-

ing guided photonic modes, than there would be a cut-off at some waveguide radius

beyond which the propagation is not possible:61 the wave is reflected back with

only a short evanescent tail in the forward direction; no field enhancement would

occur, and only an exponentially small part of the incident energy would reach the

tip.
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It was suggested earlier62 that the propagation of SPPs toward the tip can

produce energy concentration. It was also noted63 that at the cut-off point, the

guided photonic modes of an optical fiber could couple to the plasmonic modes of

its metal coating causing further transfer of optical energy to the tip. However, no

role of the adiabatic slowing-down and stopping of SPPs was previously elucidated.

It is feasible that the observed41 high efficiency of a metal tip on aperture probe is

due to the proposed effect of the adiabatic accumulation.

The physical reason that the nanoplasmonic waveguide is an efficient energy

concentrator can be inferred from Fig. 12(a). Both the phase and group velocity of

SPPs asymptotically tend to zero toward the nanotip. Consequently, the SPPs are
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z
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Fig. 11. (a) Geometry of the nanoplasmonic waveguide. The propagation direction of the SPP’s
is indicated by the arrow. Intensity I(r) = |E(r)|2 of the local fields relative to the excitation
field is shown by color. The scale of the intensities is indicated by the color bar in the center.
(b) Local electric field intensity I(r) is shown in the longitudinal cross section of the system. The
coordinates are indicated in the units of the reduced radiation wavelength in vacuum, λ = 100
nm. The radius of the waveguide gradually decreases from 50 to 2 nm.
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slowed down and adiabatically stopped at z → 0, which leads to their accumulation

at the tip. Correspondingly, in Fig. 12 (b) the local optical field is oscillating in

space with progressively decreasing wavelength and its amplitude increasing by more

than an order of magnitude. The highest enhancement is in fact limited only by the

minimum tip size that can be considered on the basis of continuous electrodynamics.

Importantly, being adiabatic to prevent the back reflection and 3D scattering, this

process should be as rapid as possible to prevent losses in the metal.

-20 -10 0

0

0.5
vp /c
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z

Fig. 12. (a) Phase velocity vp, group velocity vg , and adiabatic parameter δ (scaled by a factor
of 10) are shown as functions of the plasmonic waveguide radius. (b) Radial optical electric field
at the surface of the metal nanowire waveguide in the units of the excitation field against the
coordinate (in the propagation direction).

In Fig. 12 (a), along with the phase velocity vp and group velocity vg, we show

also the adiabatic (WKB) parameter δ. It is of principal importance that this

adiabatic parameter does stay finite and small, δ ≤ 0.07, throughout the entire

system, ensuring the global applicability of the eikonal approximation, including

the essentially singular point at z = 0.

The SPP electric fields are found from the Maxwell equations in eikonal (WKB)

approximation in the form:

Ez(r, z) = θ(R − r)I0(k0κmr) + θ(r − R)BK0(k0κdr) ,

Ez(r, z) = θ(R − r)i
n

κm
I1(k0κmr)

+ θ(r − R)i
n

κd
BK1(k0κdr) , (66)

where B = I0(k0κmR)/K0(k0κmR), and θ(. . . ) denotes the Heaviside θ-function.

To determine the pre-exponential A(z) in Eq. (63), we use the energy flux con-

servation in terms of the Pointing vector integrated over the normal (xy) plane,

obtaining

A ∝ Re

[

n∗ε∗m

|κm|2
|K0(k0κdR)|2

∫ R

0

|I1(k0κmr)|2 rdr

+
n∗ε∗d
|κd|2

|I0(k0κmR)|2
∫ ∞

R

|K1(k0κdr)|2 rdr

]− 1
2

, (67)

where all the spatially-varying quantities, n, κm, and κd, are functions of local

radius R of the wire, as originally given by Eq. (64). The required dependence
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A = A(z) is obtained by substituting the grading relation R = R(z). We indicate

only the proportionality of A: the total scale of A is undetermined by the equations

and is defined by the total power of the propagating SPP wave. This completes the

eikonal (WKB) solution.

The intensity of the optical electric fields has already been discussed in conjunc-

tion with Fig. 11 where they are shown on the logarithmic scale. For this example

and below, we set the minimum radius of the wire to be Rmin = 0.02λ = 2 nm to

avoid effects of the spatial dispersion of the dielectric response that are important at

shorter distances, cf. Refs.,64,65 and the maximum radius (at z = −25λ = −2.5 µ)

to be Rmax = 0.5λ = 50 nm.
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Fig. 13. Snapshot of instantaneous fields (at some arbitrary moment t = 0): Normal component
Ex (a) and longitudinal component Ez (b) of the local optical electric field are shown in the
longitudinal cross section (xz) plane of the system. The fields are in the units of the far-zone
(excitation) field.

In Fig. 13, we display the amplitudes of the local optical fields in the cross section

of the system for the normal and longitudinal (with respect to the axis) components

of the optical electric field. In Fig. 13, far from the tip of the nanoplasmonic

waveguide, the optical electric field is mostly transverse, extending in vacuum to

distances ∼ λ where most of the SPP field is propagating. The longitudinal field in

the metal is very small, proportional to a factor of |εd/εm| � 1, as should be from

the boundary conditions. Therefore, the guide itself is clearly seen in panel (a) as

the acute triangular region of low fields. As SPPs move toward the tip, the SPP

fields start to localize at the metal surface, and simultaneously, their wavelength is

progressively reducing and amplitude growing. Because the very tip is not included,

the singularity point of the fields does not show in these figures. Even with this

truncation, the field magnitudes grow significantly at small |z|. The transverse x

component grows by an order of magnitude as the SPPs approach the tip of the

guide, while the longitudinal z component, which is very small far from the tip,

grows relatively much stronger. Close to the tip, both these components are on the

same order of magnitude, as is expected for the localized excitations. This growth

in magnitude is concurrent with the energy localization in 3D and the significant

reduction of the wavelength, which are due to the dramatic slowing down of the
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SPPs. Note the SPPs in Fig. 13 are not standing but running waves; the fields

shown represent an instantaneous snapshot of these waves.
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Fig. 14. Mean (time averaged) intensity I(r) (a) and the energy density W (r) (b) of the local
optical electric field in the xy plane of the system. The magnitudes are relative to those of the
excitation wave.

In Fig. 14, we show the spatial behavior of relative intensity I(r) and energy

density48 W (r) = {d[ωε(r, ω)]/dω} |E|2 of the local optical electric field. The in-

tensity grows by more than three and energy density by four orders of magnitude

at the tip. If these fields were used to induce SERS, it would be enhanced by seven

to eight orders of magnitude. The further enhancement of SERS by many orders of

magnitude can be achieved by positioning a resonant nanolens66 at the tip of the

nanoplasmonic waveguide. Note that |E|2 is concentrated at the outer surface of

the metal nanowire, with the exponential decay far from this surface. In contrast,

a metal nanoparticle excited by an external field would produce dipolar local fields

where |E|2 ∝ r−6. At the same time, I(r) is significantly larger and localized inside

the metal plasmonic waveguide where most of the SPP energy is propagating due to

the large value of d[ωε(r, ω)]/dω for metals.

At the foundation of the above-described high-efficiency coupling of the far-field

radiation to the near-field is the adiabatic slow-down of the running, propagating

SPPs and their gradual conversion into standing, SP-like modes. The 3D energy

concentration occurs at the tip of a smoothly tapered metal nanoplasmonic waveg-

uide. This causes the local field increase by three orders of magnitude in intensity

and four orders in energy density. The stopping of SPPs is asymptotic, i.e., they

need logarithmically divergent time to reach the tip, which mathematically is the

point of an essential singularity. Similar phenomena are likely to exist for a hollow

tapered waveguides, in particular subwavelength holes. The rapid adiabatic nanofo-

cusing promises to find various applications in nanooptics and nanotechnology where

greatly enhanced local optical fields are required, in particular, for probing, spec-

troscopy, detection, and modification on the nanoscale in physics, chemistry, biology,

electrical engineering, etc.
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2.7.1. Experimental Observations of Adiabatic SPP Concentration

Following the publication of the original theoretical proposal,10,44 there has been

several experimental confirmations of this concept. The adiabatic concentration of

SPPs manifested by enhanced local optical fields around a tip of the nanoplasmonic

tapered planar wedge have been recently observed.67,68 This energy concentration is

accompanied by greatly enhanced nonlinear- optical effects. A very original method

using upconverted far-field fluorescence of rear-earth ions have been used in these

studies to visualize the near-field optical energy. The principal possibility of such a

method is based on the fact the upconverted wavelength is much shorter than the

fundamental wavelength in vacuum; thus far-field observation of the upconverted

radiation allows one to see the near fields of the SPPs at the fundamental frequency.

The observed phenomena are in a good qualitative agreement with the above theory.

However, he quantitative comparison is difficult because of the planar geometry

(metal wedge on a substrate) in the experiment and the cylindrical one in the

theory.

An independent confirmation has been obtained in an experiment using a free-

standing silver cone.69 In this experiment, the SPPs are excited using a grating

coupler cut into a side of the cylinder. A strongly enhanced emission has been

observed in the far-field using a confocal optical microscope from the tip of the

cone. It is likely that this emission is caused by outcoupling of light from the cone

due to the some roughness of the silver surface. Very promising is combination of

the adiabatic SPP concentration with the electron emission, which, similar to Ref.

70 will allow for the creation of nanoscale sources electron pulses. In combination

with the ideas of the coherent control,15,31,37 it is possible to make this nanoscale

electron source also ultrafast, producing femtosecond electron pulses. Such sources

can have a wide range of applications in science and engineering.

3. Nanoplasmonic Active Phased Array (NAPAR)

3.1. Introduction to Spatio-Temporal Coherent Control

Two novel areas of optics have recently attracted a great deal of attention: nanoop-

tics and ultrafast optics. One of the most rapidly developing directions in ul-

trafast optics is quantum control, in which coherent superpositions of quantum

states are created by excitation radiation to control the quantum dynamics and

outcomes.22,25,71,72 Of special interest are coherently controlled ultrafast phenom-

ena on the nanoscale where the phase of the excitation waveform along with its

polarization provides a functional degree of freedom to control the nanoscale distri-

bution of energy.15,31–34,36,73 Spatiotemporal pulse shaping permits one to generate

dynamically predefined waveforms modulated both in frequency and in space to

focus ultrafast pulses in the required microscopic spatial and femtosecond temporal

domains.74,75
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In this Section, we theoretically describe a method of full coherent control on

the nanoscale proposed in Ref. 37. In this method, a spatio-temporally modulated

waveform is launched in a graded nanostructured system, specifically a wedge. Its

propagation from the thick (macroscopic) to the thin (nanoscopic) edge of the wedge

and the concurrent adiabatic concentration provide a possibility to focus the optical

energy in nanoscale spatial and femtosecond temporal regions. This method unifies

three approaches that individually have been developed and experimentally tested.

The coupling of the external radiation to the surface plasmon polaritons (SPPs)

propagating along the wedge occurs through an array of nanoobjects (nanoparticles

or nanoholes) that is situated at the thick edge of the wedge. The phases of the SPPs

emitted (scattered) by individual nanoobjects are determined by a spatio-temporal

modulator. The nanofocusing of the SPPs occurs due to their propagation toward

the nanofocus and the concurrent adiabatic concentration.

The coupling of the external radiation to SPPs and their nanofocusing have

been observed – see, e.g., Refs. 76,77. The second component of our approach,

the spatio-temporal coherent control of such nanofocusing has been developed.74,75

The third component, the adiabatic concentration of SPPs also has been recently

observed.67,69 The idea of adiabatic concentration is described above in Sec. 2. It

is based on adiabatic following by a propagating SPP wave of a graded plasmonic

waveguide, where the phase and group velocities decrease while the propagating

SPP wave is adiabatically transformed into a standing surface plasmon (SP) mode.

A new quality that is present in our approach is a possibility to arbitrary move

the nanofocus along the nanoedge of the wedge. Moreover, it is possible to super-

impose any number of such nanofoci simultaneously and, consequently, create any

distribution of the nanolocalized fields at the thin edge of the wedge.

The idea of the spatio-temporal coherent control is analogous to that of the

synthetic aperture radar (SAR) and conceptually similar active phased array radar

(APAR), or active electronically scanned array (AESA) radar widely used in mil-

itary and civilian radar systems. This idea can be introduced using a schematic

shown in Fig. 15. An APAR consists of active oscillators that act as dipole anten-

nas (shown by bold short vertical segments). Each of these antennas generates a

pulse of radiation whose phase is controlled elctronically. If the phases are equal,

as in Fig. 15(a), the beam produced by the interference of the waves emitted by

each of the antennas is straight with the wavefront parallel to the array base. If

there is a linear phase shift, as in panel (b), the beam is steered toward the emitters

with retarded phases. For a parabolic-type modulation of the phases along the base

line with a maximum phase delay in the center, a focused beam is formed as in

panel (c). And finally, a linear combination of the linear and focusing phase shifts

leads to the simultaneous steering and focusing as shown in Fig. 15(d). Due to

the superposition principle, any superposition of the beams can be created by the

correspondingly superimposing the phase modulations, provided that the number

of the active antennas is large enough.
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The idea of this full coherent control is APAR transferred to the nanoplasmon-

ics, which can be called Nanoplasmonic Active Phased Array “Radar” (NAPAR).

This can be complemented with the adiabatic nanofocusing to further increase the

concentration of the optical energy. To introduce it consider a schematic in Fig. 16.

As shown, a nanoplasmonic wedge contains a line of nano-size scatterers (shown as

nanospheres) located at the thick edge and parallel to it, i.e. in the x direction in

Fig. 16 (b). These scatters play the role if the emitting dipoles in NAPAR and can

be either nanoparticles of various shapes and compositions, nanoholes, or elements

of the surface roughness.

Consider first monochromatic light irradiating these nanoparticles or nanoholes

that scatter and couple it into SPP wavelets, shown as red arc segments in Fig. 16.

Every such a scatterer emits SPPs in all directions; there is, of course, no favored

directionality of the scattering. However, we assume that the excitation radiation

and, correspondingly, the scattered wavelets of the SPP are coherent, and their

phases smoothly vary in space along the thick edge, i.e., in the x direction. The

SPP wavelets emitted by different scatterers will interfere, which in accord with

the Huygens-Fresnel principle leads to formation of a smooth wavefront of the SPP

wave at some distance from the scatterers in the far SPP field. This distance, of

course, must be much greater than the spacing of the scatterers.

Such wavefronts are shown in Fig. 16 (b) with concave black curves. The energy

of the SPP is transferred along the rays, which are lines normal to the wavefronts,

shown by the colored lines. By the appropriate spatial phase modulation of the

excitation radiation along the line of scatterers over distances of many SPP wave-

(a) (b)

(c) (d)

Straight beam

Focusing

Stearing

Stearing and focusing

Fig. 15. Schematic of the Active Phased Array Radar (APAR). The short solid elements indicated
the active dipoles (oscillators) of the antenna array. The dashed horizontal lines show the ray
propagation in the far field of the array. The solid vertical red line shows the wavefront of the
radar pulse. The individual pulses fed to (for a passive array) generated by the array oscillators
(for an active array) are indicated by the waveforms shown above the corresponding rays. (a):
Case of the straight beam (wavefront parallel to the array base) where there is no phase delay
between the oscillators. (b) Beam steering: There is a phase delay between the oscillator pulses
increasing linearly from bottom to the top. (c) Beam focusing: the phase delays are minimum
at the center and maximum at the edges to form a spherical wavefront. (d) Beam staring and
focusing: the phase delays are a combination of a linear shift and parabolic modulation.
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lengths, these wavefronts can be formed in such a way that the rays intersect at a

given point, forming a nanofocus at the thin (sharp) edge of the wedge, as shown

schematically in Fig. 16 (b). Diffraction of the SPP waves will lead to a finite size

of this focal spot that we will estimate later in this Section.

By changing the spatial phase profile of the excitation radiation, this focal spot

can be arbitrarily moved along the thin edge. This focusing and adiabatic concen-

tration, as the SPPs slow down approaching the sharp edge, will lead to the en-

hancement of the intensity of the optical fields in the focal region. This dynamically-

controlled concentration of energy is a plasmonic counterpart of a large phased an-

tenna array (also known as an aperture synthesis antenna or beamformer), widely

used in radar technology and radio astronomy.78 Now we can consider excitation

by spatiotemporally shaped ultrashort pulses.74,75 The field produced by them is

a coherent superposition of waves with different frequencies whose amplitudes and

phases can arbitrarily vary in space and with frequency. This modulation can be

chosen so that all the frequency components converge at the same focal spot at the

same time forming an ultrashort pulse of the nanolocalized optical fields.

Turning to the theory, consider a nanofilm of metal in the xy plane whose

thickness d in the z direction is adiabatically changing with the coordinate-vector

ρ = (x, y) in the plane of the nanofilm. Let εm = εm(ω) be the dielectric permittiv-

ity of this metal nanofilm, and εd be the permittivity of the embedding dielectric. As

we discussed in Sec. 2.4, due to the symmetry of the system, there are odd and even

(in the normal electric field) SPPs. It is the odd SPP that is a slow-propagating,

controllable mode. The dispersion relation for this mode defining its effective index

n(ρ) is given by Eq. 32, which can be explicitly rewritten as

tanh

(

1

2
k0d(ρ)

√

n(ρ)2 − εm

)

= −εd

√

n(ρ)2 − εm

εm

√

n(ρ)2 − εd

, (68)

where k0 = ω/c is the radiation wave vector in vacuum.

Let τ be a unit tangential vector to the SPP trajectory (ray). It obeys an

equation of ray optics48 n (dτ/dl) = ∂n/∂ρ − τ (τ∂n/∂ρ), where l is the length

along the ray.

Now let us consider a nanofilm shaped as a nanowedge as in Fig. 16(b), see

also theory of Sec. 2.6. In such a case, n = n(y), and these trajectory equations

simplify as n (dτy/dl) = τ2
x (dn/dy), n (dτx/dl) = −τxτy (dn/dy). From these, it

follows that nx ≡ τxn = const. The SPP wave vector, related to its momentum, is

k(ρ) = k0n(ρ)τ ; this is the conservation of kx (the transverse momentum). This

allows one to obtain a closed solution for the ray. The tangent equation for the ray

is dx/dy = τx/τy, where τy =
√

1 − n2
x/n2. From this, we get an explicit SPP ray

equation as

x − x0 =

∫ y

y0

(

n(y′)2

n2
x

− 1

)−1/2

dy′ , (69)
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where ρ0 = (x0, y0) is the focal point where rays with any nx converge. To find the

trajectories, as n(y) we use the real part of effective index (68), as WKB suggests.

When the local thickness of the wedge is subwavelength (k0d � 1), the form

of these trajectories can be found analytically. Under these conditions, dispersion

relation (68) has an asymptotic solution

n =
na

k0d
, na = ln

εm − εd

εm + εd
. (70)

Substituting this into Eq. (69), we obtain an explicit SPP ray equation
(

x − x0 −
√

n̄2
a /n2

x − y2
0

)2

+ y2 = n̄2
a

/

n2
x , where n̄a = na/(k0 tan θ), and tan θ

is the slope of the wedge. Thus, each SPP ray is a segment of a circle whose center

is at a point given by x = x0 +
√

(n̄a/nx)2 − y2
0 and y = 0. This analytical result

is in agreement with Fig. 16 (b). If the nanofocus is at the sharp edge, i.e., y0 = 0,

then these circles do not intersect but touch and are tangent to each other at the

nanofocus point.

As an example we consider a silver51 nanowedge illustrated in Fig. 16 (b) whose

maximum thickness is dm = 30 nm, the minimum thickness is df = 4 nm, and whose

length (in the y direction) is L = 5 µm. Trajectories calculated from Eq. (69) for

~ω = 2.5 eV are shown by lines (color used only to guide eye); the nanofocus is

indicated by a bold red dot. The different trajectories correspond to different values

of nx in the range 0 ≤ nx ≤ n(L). In contrast to focusing by a conventional lens,

the SPP rays are progressively bent toward the wedge slope direction.

The eikonal is found as an integral along the ray Φ(ρ) =
∫

ρ

ρ0
n(ρ)dρ. Consider

rays emitted from the nanofocus [Fig. 16 (b)]. Computed from this equation, the

phases of the SPPs at the thick edge of the wedge (for y = L) are shown in Fig.

17 (a) as functions of the coordinate x along the thick edge. The colors of the rays

correspond to the visual perception of the ray frequencies. The gained phase dra-

matically increases toward the blue spectral region, exhibiting a strong dispersion.

The extinction for most of the frequencies except for the blue edge, displayed in

Fig. 17 (b), is not high.

Now consider the evolution of the field intensity along a SPP ray. For certainty,

let SPPs propagate along the corresponding rays from the thick edge of the wedge

toward the nanofocus as shown in Fig. 16 (b). In the process of such propagation,

there will be concentration of the SPP energy in all three directions (3d nanofo-

cusing). This phenomenon differs dramatically from what occurs in conventional

photonic ray optics.

To describe this nanofocusing, it is convenient to introduce an orthogonal system

of ray coordinates whose unit vectors are τ (along the ray), η = (−τy, τx) (at the

surface normal to the ray), and ez (normal to the surface). The concentration along

the ray (in the τ direction) occurs because the group velocity vg = [∂(k0n)/∂ω]
−1

of SPP asymptotically tends to zero (for the antisymmetric mode) for k0d → 0 as

vg = v0gd where v0g = const.10 This contributes a factor A‖ = 1/
√

vg(d) to the

amplitude of an SPP wave.
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The compression of a SPP wave in the ez (vertical) direction is given by a factor

of Az =
(

∫∞

−∞ Wdz
)−1/2

, where W is the energy density of the mode. Substituting

a standard expression48 for W , one obtains explicitly

Az =

(

1
8π exp (Re κdd)

{

sinh (Re κmd)

Re κm |sinh (κmd/2)|2
[

1 +
d(ωRe εm)

dω

|n|2 + |κm|2
|εm|2

]

−

sin (Im κmd)

Im κm |sinh (κmd/2)|2
[

1 +
d(ωRe εm)

dω

|n|2 − |κm|2
|εm|2

]

+

2

Re κd

[

1 +
|n|2 + |κd|2

εd

]

}

)−1/2

, (71)

where κm = k0
√

n − εm and κd = k0
√

n − εd. Note that the intensity distribution

in Fig. 16 (a) is I ∝
(

A‖Az

)−2
.

To obtain the compression factor A⊥ for the η direction), we consider conser-

vation of energy along the beam of rays corresponding to slightly different values

of nx. Dividing this constant energy flux by the thickness of this beam in the η

direction, we arrive at

A⊥ =

{

(

1 − n2
x

n2

)1/2 ∫ y

y0

1

n(y′)

[

1 − n2
x

n(y′)2

]−3/2

dy′

}−1/2

. (72)

The ray amplitude thus contains the total factor which describes the 3d adiabatic

compression: A = A‖A⊥Az .

Now consider the problem of coherent control. The goal is to excite a spatiotem-

poral waveform at the thick edge of the wedge in such a way that the propagating

SPP rays converge at an arbitrary nanofocus at the sharp edge where an ultrashort

pulse is formed. To solve this problem, we use the idea of back-propagation or

time-reversal.79–81 We generate rays at the nanofocus as an ultrashort pulse con-

taining just several oscillations of the optical field. Propagating these rays, we find

amplitudes and phases of the fields at the thick edge at each frequency as given by

the eikonal Φ(ρ). Then we complex conjugate the amplitudes of frequency compo-

nents, which corresponds to the time reversal. We also multiply these amplitudes

by exp(2Im Φ) which pre-compensates for the losses. This provides the required

phase and amplitude modulation at the thick edge of the wedge.

We show an example of such calculations in Fig. 18. Panel (a) displays the

trajectories of SPPs calculated according to Eq. (69). The trajectories for dif-

ferent frequencies are displayed by colors corresponding to their visual perception.

There is a very significant spectral dispersion: trajectories with higher frequencies

are much more curved. The spatial-frequency modulation that we have found suc-

ceeds in bringing all these rays (with different frequencies and emitted at different



April 29, 2008 23:47 World Scientific Review Volume - 9.75in x 6.5in Coherent˙Control˙Stockman

38 Mark I. Stockman

x points) to the same nanofocus at the sharp edge.

The required waveforms at different x points of the thick edge of the wedge

are shown in Fig. 18 (b)-(d) where the corresponding longitudinal electric fields

are shown. The waves emitted at large x, i.e., at points more distant from the

nanofocus, should be emitted significantly earlier to pre-compensate for the longer

propagation times. They should also have different amplitudes due to the differences

in A. Finally, there is clearly a negative chirp (gradual decrease of frequency with

time). This is due to the fact that the higher frequency components propagate more

slowly and therefore must be emitted earlier to form a coherent ultrashort pulse at

the nanofocus.

In Fig. 18 (e) we display together all three of the representative waveforms at

the thick edge to demonstrate their relative amplitudes and positions in time. The

pulse at the extreme point in x (shown by blue) has the longest way to propagate

and therefore is the most advanced in time. The pulse in the middle point (shown

by green) is intermediate, and the pulse at the center (x = 0, shown by red) is

last. One can notice also a counterintuitive feature: the waves propagating over

longer trajectories are smaller in amplitude though one may expect the opposite

to compensate for the larger losses. The explanation is that the losses are actually

insignificant for the frequencies present in these waveforms, and the magnitudes are

determined by adiabatic concentration factor A.

Figure 18 (e) also shows the resulting ultrashort pulse in the nanofocus. This

is a transform-limited, Gaussian pulse. The propagation along the rays completely

compensates the initial phase and amplitude modulation, exactly as intended. As

a result, the corresponding electric field of the waveform is increased by a factor of

100. Taking the other component of the electric field and the magnetic field into

account, the corresponding increase of the energy density is by a factor ∼ 104 with

respect to that of the SPPs at the thick edge.

Consider the efficiency of the energy transfer to the nanoscale. This is primarily

determined by the cross section σ
SP P

for scattering of photons into SPPs. For

instance, for a metal sphere of radius R at the surface of the wedge, one can obtain

an estimate σ
SP P

∼ R6/(d3
mλ), where λ is the reduced photon wavelength. Setting

R ∼ dm, we estimate σ
SP P

∼ 3 nm2. Assuming optical focusing into a spot of ∼ 300

nm radius, this yields the energy efficiency of conversion to the nanoscale of ∼ 10−3.

Taking into account the adiabatic concentration of energy by a factor of 104, the

optical field intensity at the nanofocus is enhanced by one order of magnitude with

respect to that of the incoming optical wave.

The criterion of applicability of the WKB approximation is ∂k−1/∂y � 1. Sub-

stituting k = k0n and Eq. (70), we obtain a condition dm/(naL) << 1. This

condition is satisfied everywhere including the nanofocus since na ∼ 1 and dm � L

for adiabatic grading. The minimum possible size of the wavepacket at the nanofo-

cus in the direction of propagation, ∆x, is limited by the local SPP wavelength:

∆x ∼ 2π/k ≈ 2πdf/na. The minimum transverse size a (waist) of the SPP
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beam at the nanofocus can be calculated as the radius of the first Fresnel zone:

a = π/kx ≥ π/(k0nx). Because nx is constant along a trajectory, one can substi-

tute its value at the thick edge (the launch site), where from Eq. (70) we obtain

nx ≈ n = na/dm. This results in a ≈ πdm/na; thus a is on order of the maximum

thickness of the wedge, which is assumed also to be on the nanoscale.

To briefly conclude, we have theoretically described an approach to full coherent

control of spatiotemporal energy localization on the nanoscale. From the point of

view of electromagnetics this concept is a nanoplasmonic counterpart of the active

phased array radar (APAR) and can be called NAPAR. As we described, in NAPAR

from the thick edge of a plasmonic metal nanowedge, SPPs are launched, whose

phases and amplitudes are independently modulated for each constituent frequency

of the spectrum and at each spatial point of the excitation. This pre-modulates the

departing SPP wave packets in such a way that they reach the required point at the

sharp edge of the nanowedge in phase, with equal amplitudes forming a nanofocus

where an ultrashort pulse with required temporal shape is generated. Of course, a

similar control can be achieved on a nanoplasmonic slab of a constant thickness, but

then the benefit of the adiabatic nanofocusing would be lost. The system described

(NAPAR) constitutes a “nanoplasmonic portal” connecting the incident light field,

whose features are shaped on the microscale, with the required point or features at

the nanoscale.
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Fig. 16. Schematic of the full coherent control on the nanoscale or nanoplasmonic active phased
array radar (NAPAR). The system consists of plasmonic (silver) nanowedge with nanoparticles
(silver nanospheres) positioned at its thick edge. Light beams focused on each of the nanospheres
are shown by cones. The omni-directed SPP waves emitted by these excited nanospheres are shown
by the red arc segments. The wavefront form by the interference is shown bu concave black curves.
Trajectories of SPP rays propagating from the thick to sharp edge of the wedge are shown by color
curves, with color coding the initial coordinates. The SPP frequency used in actual computations
is ~ω = 2.5 eV.
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Fig. 17. (a) Phase (real part of eikonal Φ) acquired by a SPP ray propagating between a point
with coordinate x on the thick edge and the nanofocus, displayed as a function of x. The rays differ
by frequencies that are color coded by the vertical bar. (b) The same as (a) but for extinction of
the ray (Im Φ).
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Fig. 18. (a) Trajectories (rays) of SPP packets propagating from the thick edge to the nanofocus
displayed in the xy plane of the wedge. The frequencies of the individual rays in a packet are
indicated by color as coded by the bar at the top. (b)-(d) Spatiotemporal modulation of the exci-
tation pulses at the thick edge of the wedge required for nanofocusing. The temporal dependencies
(waveforms) of the electric field for the phase-modulated pulses for three points at the thick edge
boundary: two extreme points and one at the center, as indicated, aligned with the corresponding
x points at panel (a). (e) The three excitation pulses of panels (b)-(d) (as shown by their colors),
superimposed to elucidate the phase shifts, delays, and shape changes between these pulses. The
resulting ultrashort pulse at the nanofocus is shown by the black line. The scale of the electric
fields is arbitrary but consistent throughout the figure.


