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I. TIGHT BINDING HAMILTONIAN

The three band third-nearest-neighbor (TNN) tight-binding (TB) model Hamiltonian, HTNN , of a transition metal
dichalcogenide (TMDC) monolayer is constructed from three orbitals (dz2 , dxy, and dx2−y2) of the metal atom, as
introduced by Liu et al.1, is

HTNN(k) =

 V0 V1 V2

V ∗1 V11 V12

V ∗2 V ∗12 V22

 , (1)

where

V0 = ε1 + 2t0(2 cosα cosβ + cos 2α) + 2r0(2 cos 3α cosβ + cos 2β) + 2u0(2 cos 2α cos 2β + cos 4α) ,

Re[V1] = −2
√

3t2 sinα sinβ + 2(r1 + r2) sin 3α sinβ − 2
√

3u2 sin 2α sin 2β ,

Im[V1] = 2t1 sinα(2 cosα+ cosβ) + 2(r1 − r2) sin 3α cosβ + 2u1 sin 2α(2 cos 2α+ cos 2β) ,

Re[V2] = 2t2(cos 2α− cosα cosβ)− 2√
3

(r1 + r2)(cos 3α cosβ − cos 2β) + 2u2(cos 4α− cos 2α cos 2β) ,

Im[V2] = 2
√

3t1 cosα sinβ +
2√
3

sinβ(r1 − r2)(cos 3α+ 2 cosβ) + 2
√

3u1 cos 2α sin 2β ,

V11 = ε2 + (t11 + 3t22) cosα cosβ + 2t11 cos 2α+ 4r11 cos 3α cosβ + 2(r11 +
√

3r12 cos 2β) +

(u11 + 3u22) cos 2α cos 2β + 2u11 cos 4α ,

Re[V12] =
√

3(t22 − t11) sinαsinβ + 4r12 sin 3α sinβ +
√

3(u22 − u11 sin 2α sin 2β) ,

Im[V12] = 4t12 sinα(cosα− cosβ) + 4u12 sin 2α(cos 2α− cos 2β) ,

V22 = ε2 + (3t11 + t22) cosα cosβ + 2t22 cos 2α+ 2r11(2 cos 3α cosβ + cos 2β) +

2√
3
r12(4 cos 3α cosβ − cos 2β) + (3u11 + u22) cos 2α cos 2β + 2u22 cos 4α ,

(2)

in which

(α, β) =

(
1

2
kxa,

√
3

2
kya

)
. (3)

The values for parameters a, ε1, ε2, t0, t1, t2, t11, t12, t22, r0, r1, r2, r11, r12, u0, u1, u2, u11, u12, u22 for MoS2 and WS2 can
be found in the Table I.

II. SOC CONTRIBUTION TO THE HAMILTONIAN

The contribution of the spin orbit coupling (SOC), HSOC, to the total Hamiltonian written in the basis of{
|dz2 , ↑ 〉 , |dxy, ↑ 〉 , |dx2−y2 , ↑ 〉 , |dz2 , ↓ 〉 , |dxy, ↓ 〉 , |dx2−y2 , ↓ 〉 } is the following matrix1,2 :

HSOC = λL.S =

[
λ
2Lz 0

0 −λ2Lz

]
(4)
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a ε1 ε2 t0 t1 t2 t11

t12 t22 r0 r1 r2 r11 r12

u0 u1 u2 u11 u12 u22 λ

MoS2

3.190 0.683 1.707 -0.146 -0.114 0.506 0.085

0.162 0.073 0.060 -0.236 0.067 0.016 0.087

-0.038 0.046 0.001 0.266 -0.176 -0.150 0.073

WS2

3.191 0.717 1.916 -0.152 -0.097 0.590 0.047

0.178 0.016 0.069 -0.261 0.107 -0.003 0.109

-0.054 0.045 0.002 0.325 -0.206 -0.163 0.211

TABLE I. Fitted parameters for three band TNN TB on the first-principles (FP) band structure in generalized-gradient
approximation (GGA) case, lattice constant(a), and SOC paramrter (λ). All quantities are in unit eV except a which is in unit
Å1.

where λ is the SOC parameter, and Lz is the z-component of the orbital angular momentum1,

Lz =

 0 0 0

0 0 2i

0 −2i 0

 . (5)

Therefore, HSOC is 2×2 block diagonal Hamiltonian where the nonzero upper block corresponds to spin up and the
nonzero lower block corresponds to spin down1.

III. MAIN EQUATIONS

The total Hamiltonian, H0(k), in the same basis is

H0(k) = HTNN(k) +HSOC (6)

where HTNN(k) is the 3×3 tight binding Hamiltonian without spin, HSOC(k) is the SOC contribution, and the total
Hamiltonian, H0(k), is a block diagonal operator expressed as

H0(k) =

[
HTNN(k) + λ

2Lz 0

0 HTNN(k)− λ
2Lz

]
=

[
H↑3×3(k) 0

0 H↓3×3(k)

]
, (7)

in which the nonzero upper block corresponds to the spin up and the nonzero lower block to the spin down. Band
structures of MoS2 and WS2 for the two components of the spin are shown in Fig. 1, which shows spin splitting of
the energy bands due to the intrinsic SOC. Protected by the time-reversal (T ) symmetry, the band energies in the
K- and K ′-valleys are identical but the spins are reversed as illustrated in Fig. 1.

In the presence of an external field, F(t), the Hamiltonian in the length gauge is H0(k)+H int, where H int = eF(t)r,
and e is unit charge. Electron dynamics in the presence of field F(t) includes two major components: intraband
and interband. The intraband electron dynamics in a single band is described by the Bloch acceleration theorem,
k(q, t) = q + e

h̄cA(t), where k(q, t) is electron crystal momentum as a function of time t, q is the initial crystal

momentum, A(t) = −c
∫ t
−∞F(t′)dt′ is vector potential in the velocity gauge, and c is speed of light.

We describe the resulting electron dynamics by solving time-dependent Schrödinger equation (TDSE). Since the
Hamiltonian, H0(k), is block-diagonal, the spin-up and spin-down components are decoupled. Therefore, the TDSE
for each component of the spin,

ih̄
dΨ

dt
= (Hs

3×3 +H int)Ψ , (8)

where s ∈ {↑, ↓}, can be solved independently.
We solve the set of coupled ordinary differential equations (??)-(??) numerically by using a variable time step

Runge-Kutta method7 with the following initial conditions (βvq, βc1q, βc2q)=(1,0,0) to find the bands populations N
as a function of time and the lattice momentum q.
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FIG. 1. (Color online) Band structure for monolayers of (a) MoS2 and (b) WS2 for two component of the spin. The solid lines
are for spin-up and the dash lines are for spin-down.

FIG. 2. (Color online) Coupling dipole matrix element D for MoS2. (a) Modulus of longitudinal component, Dk = Dk̂, (b)
Phase of Dk, (c) Modulus of tangential component Dϕ = Dϕ̂, and (d) Phase of tangential component Dϕ calculated in the
vicinity of each valley. Black solid lines show the boundary of the Brillioun zone of MoS2.
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FIG. 3. (Color online) Residual CB populations N
(res)
CB,s(k) for monolayer MoS2 after right-handed circularly polarized pulse

with two oscillations, see Eq. (11). The red solid line shows the Brillouin zone boundary. Amplitude of the applied field is

F0 = 0.25 VÅ−1. (a) Population N
(res)
CB↑ (k) for spin up electrons. (b) The same as panel (a) but for spin down electrons,

N
(res)
CB↓ (k).

IV. MEAN FREQUECNY OF THE OPTICAL PULSE

An ultrafast pulse has no definite frequency since its Fourier component is widely distributed in the frequency space.
We calculate the mean frequency, ω̄, of an optical pulse as

ω̄ =

∫
ωS(ω)dω∫
S(ω)dω

, (9)

where the pulse spectrum, S(ω), is defined as

S(ω) = |Fω|2, Fω =

∫ ∞
−∞

F(t)eiωtdt . (10)

For the pulse, described in Eq. (1) of the main text, we have calculated h̄ω̄ ' 1.2 eV.

V. TWO-OSCILLATION PULSE

Here we provide a solution for a pulse which is longer than the pulse used in the main text. This pulse contains
two optical field oscillations of the same chirality and is parametrized as

Fx(t) = F0
1

12
e−u

2

H(4)(u) ,

Fy(t) = F0
1

4
e−u

2

H(3)(u) , (11)

where u = t/τ , and H(n) is a Hermite polynomial of power n.
Calculated spin-resolved population distributions in the CB of MoS2 for a two-oscillation left-handed pulse of Eq.

(11) is displayed in Fig. 3. Comparing it to Figs. 2 (c), (e) of the main text, one can conclude that there is no
qualitative changes in CB population distribution when extra oscillations are added to the pulse. There are some
changes of the distributions along the separatrix but general picture remains the same. Namely, the K-valleys are
predominantly populated outside of the separatrix. There is a very small population of the K ′-valleys inside the
separatrix. Overall, the valley polarization is higher that for a single-oscillation pulse. This is understandable because
the two-oscillation pulse is closer to a circularly polarized CW radiation that the single oscillation one.
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FIG. 4. Valley CB populations, valley polarization, and spin polarization for TMDC MoS2 and WS2, as indicated. (a) Total
CB’s population n and the CB’s populations in the corresponding valleys as a function of amplitude F0 of the excitation
right-handed pulse, color coded as indicated. (b) Same as in (a) but for valley and spin polarizations.

VI. VALLEY AND SPIN POLARIZATION

We quantify valley polarization as

ηV = (n↑K + n↓K − n
↑
K′ − n↓K′)/(n

↑
K′ + n↓K′ + n↑K + n↓K), (12)

where n↑K′ is a CB population of the K ′-valley for spin-up electrons, and similar for other populations. Likewise, we
define spin polarization as

ηS = (n↑K′ − n↓K′ + n↑K − n
↓
K)/(n↑K′ + n↓K′ + n↑K + n↓K) . (13)

Figure 4 (a) displays total population n = nK + nK′ and valley populations nK = n↑K + n↓K , nK′ = n↑K′ + n↓K′

for monolayers of MoS2 and WS2 as functions of the amplitude, F0, of a chiral left-handed excitation pulse. As one
can see, for both TMDC’s, there is a strong asymmetry in the population: the K ′ valley is preferentially populated.
With an increase of F0, this asymmetry decreases but the total CB population increases. A reasonable compromise is
F0 ∼ 0.25 V/Å where the CB population is high enough (∼ 20%) but valley polarization is still also high: ηV ∼ 50%.
In contrast, the spin polarization is low, ηS ∼ 5%.
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