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Abstract
Nanoplasmonics has recently experienced explosive development with many novel ideas and
dramatic achievements in both fundamentals and applications. The spaser has been predicted
and observed experimentally as an active element—a generator of coherent local fields. Even
greater progress will be achieved if the spaser can function as an ultrafast nanoamplifier—an
optical counterpart of the MOSFET (metal–oxide–semiconductor field effect transistor). A
formidable problem with this is that the spaser has inherent feedback, causing quantum
generation of nanolocalized surface plasmons and saturation and consequent elimination of the
net gain, making it unsuitable for amplification. We have overcome this inherent problem and
shown that the spaser can perform functions of an ultrafast nanoamplifier in two modes:
transient and bistable. On the basis of quantum density matrix (optical Bloch) equations we
have shown that the spaser amplifies with gain �50 with a switching time �100 fs (potentially,
∼10 fs). This prospective spaser technology will further broaden both fundamental and applied
horizons of nanoscience, in particular enabling ultrafast microprocessors working at
10–100 THz clock speed. Other prospective applications are in ultrasensing, ultradense and
ultrafast information storage, and biomedicine. The spasers are based on metals and, in contrast
to semiconductors, are highly resistive to ionizing radiation, high temperatures, microwave
radiation, and other adverse environments.

Keywords: nanoplasmonics, quantum generator, nanoscale quantum amplifier, bistability, gain
medium, saturable absorber

1. Introduction

Nanoplasmonic phenomena (see, e.g., [1]) unfold on the spatial
scale between the skin depth ls ≈ 25 nm (in noble metals)
and the nonlocality radius lnl ∼ vF/ω ∼ 1 nm, where vF is
the electron speed at the Fermi surface, and ω is the optical
frequency. Nanoplasmonics is ultrafast: the temporal scale of
the nanoplasmonic phenomena is between the coherence time
of a hundred attoseconds defined by the inverse bandwidth of
the plasmonic frequency range (between UV and mid-IR for
plasmonic metals and doped semiconductors) [2, 3] and the
surface plasmon (SP) relaxation time γ −1

p ∼ 10–100 fs (for
noble metals in the visible to near-IR frequency range) [4].

4 http://www.phy-astr.gsu.edu/stockman.

Not just a promise any longer [5], nanoplasmonics has
delivered a number of important applications: ultrasensing [6],
scanning near-field optical microscopy [1, 7], SP-enhanced
photodetectors [8], thermally assisted magnetic recording [9],
generation of extreme UV [10], biomedical tests [6, 11], SP-
assisted thermal cancer treatment [12], and many others.

To continue its vigorous development, nanoplasmonics
needs an active device—a near-field generator and amplifier
of nanolocalized optical fields, which has until recently
been absent. A nanoscale amplifier in microelectronics
is the metal–oxide–semiconductor field effect transistor
(MOSFET) [13, 14], which has enabled all contemporary
digital electronics, including computers and communications,
and formed the present day technology as we know it.
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However, the MOSFET is limited by frequency and bandwidth
to �100 GHz, which is already a limiting factor in
further technological development. Another limitation of
the MOSFET is its high sensitivity to temperature, electric
fields, and ionizing radiation, which limits its use in extreme
environmental conditions.

An active element of nanoplasmonics is the spaser (surface
plasmon amplification by stimulated emission of radiation)
that was proposed [4] (see also [15]) as a nanoscale quantum
generator of nanolocalized coherent and intense optical fields.
It has recently been observed experimentally [16]. However,
there is a formidable problem for setting the spaser as a
nanoscale quantum amplifier. A principal difference between
a laser (quantum optical oscillator) and a quantum optical
amplifier is that the amplifier does not possess feedback:
it does not have mirrors and any parasitic feedback due
to light scattering should be carefully minimized to prevent
spontaneous generation. In sharp contrast, in the spaser, as
we discuss below in this introduction, the feedback is always
inherently present because the metal plasmonic nanoparticle
(spaser’s core) supports SP modes whose fields exert periodic
perturbation on the gain medium causing the feedback, which
fundamentally cannot be removed. This feedback will cause
the SP generation and the subsequent saturation of the gain.
For any spaser (or any laser, for that matter) in a stationary
(CW) regime, the net amplification must be zero (which is a
condition of the stable CW operation). Therefore, one might
assume that the spaser cannot serve as a nanoamplifier.

In this article we have solved this problem by suggesting
two approaches to setting the spaser as a nanoamplifier:
(i) the dynamic or transient approach, which is based on
the fact that during a femtosecond transient process after the
population inversion is created but before the CW regime
is established, the spaser possesses a net amplification, and
(ii) the bistability approach that is based on the inclusion
of a saturable absorber in the gain medium, which prevents
spontaneous generation and sets the spaser as a bistable
(logical) ultrafast nanoamplifier. This is done by employing
a quantum kinetic theory that is based on density matrix
equations, which are the adaptation of the optical Bloch
equations of the laser theory to the case of the spaser. From
these equations we have also obtained new and potentially
useful results describing not only the ultrafast dynamics of
the spaser but also its CW mode: the ‘spasing curve’ (that
is a relation between the SP population of the spasing mode
and the pumping rate) and also the linewidth of the spaser.
These results provide an excellent qualitative explanation of
the recent experimental data [16].

On the basis of the present theory, one may envisage
femtosecond-cycle nanoplasmonic chips with a high degree
of integration where spasers communicate and control each
other through their local optical fields or are connected
with nanoplasmonic wires. These can perform ultrafast
microprocessor functions. The spasers can also be integrated
with nanophotodetectors and nanosensors to perform complex
functions of intelligent ultrafast detection and sensing. In
contrast to semiconductor technology, the spasers are based
on metals and, therefore, are highly resistive to ionizing

radiation, high temperatures and other adverse environments,
with possible applications in space, nuclear industries and
defense. These functions of spasers will further widen both
the fundamental and applied horizons of nanoplasmonics and,
generally, science and technology.

1.1. Spaser fundamentals

We have recently discussed the physical principles of the
spasing [15] but will briefly reiterate them here for the
sake of completeness and self-containment. The spaser is a
nanoplasmonic counterpart of the laser [4, 15]. The laser
has two principal elements: the resonator (or cavity) that
supports photonic mode(s) and the gain (or active) medium
that is population inverted and supplies energy to the lasing
mode(s). An inherent limitation of the laser is that the size
of the laser cavity in the propagation direction is at least half a
wavelength and practically more than that even for the smallest
lasers developed [17–19]. In the spaser [4] this limitation is
overcome. The spasing modes are surface plasmons (SPs)
whose localization length is on the nanoscale [20] and is only
limited by the minimum inhomogeneity scale of the plasmonic
metal and the nonlocality radius [21] lnl ∼ 1 nm. So, the
spaser is truly nanoscopic; its minimum total size can be just a
few nm.

The resonator of a spaser can be any plasmonic metal
nanoparticle whose total size R is much less than the
wavelength λ and whose metal thickness is between lnl and
ls, which supports a SP mode with the required frequency
ωn. This metal nanoparticle should be surrounded by the
gain medium that overlaps with the spasing SP eigenmode
spatially and whose emission line overlaps with this eigenmode
spectrally [4]. As an example, we consider a model of a
nanoshell spaser [15, 22], which is illustrated in figure 1.
Panel (a) shows a silver nanoshell carrying a single SP
(plasmon population number Nn = 1) in the dipole eigenmode.
It is characterized by a uniform field inside the core and
hot spots at the poles outside the shell with the maximum
field reaching ∼106 V cm−1. Similarly, figure 1(b) shows
the quadrupole mode in the same nanoshell. In this case,
the mode electric field is non-uniform, exhibiting hot spots
of ∼1.5 × 106 V cm−1 of the modal electric field at the
poles. These high values of the modal fields are the
underlying physical reason for the very strong feedback
in the spaser. Under our conditions, the electromagnetic
retardation within the spaser volume can be safely neglected.
Also, the radiation of such a spaser is a weak effect: the
decay rate of plasmonic eigenmodes is dominated by the
internal loss in the metal. Therefore, it is sufficient to
consider only quasistatic eigenmodes [20, 23] and not their full
electrodynamic counterparts [24], which also is necessary for
the ultrafast operation of the spaser as a nanoamplifier.

Note that for high aspect ratios (say, η = 0.95,
considered in some of the examples) and relatively small radii
(R = 12 nm) the thickness of the metal shell may be
rather small (<1 nm), which may lead to nonlocal effects
including Landau damping. In this case, the radius of the
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Figure 1. Schematic of the spaser geometry, local fields, and fundamental processes leading to spasing. (a) Nanoshell geometry and the local
optical field distribution for one SP in an axially symmetric dipole mode. The nanoshell has aspect ratio η = 0.95. The local field magnitude
is color coded by the scale bar in the right-hand side of the panel. (b) The same as (a) but for a quadrupole mode. (c) Schematic of a nanoshell
spaser where the gain medium is outside of the shell, on the background of the dipole mode field. (d) The same as (c) but for the gain medium
inside the shell. (e) Schematic of the spasing process. The gain medium is excited and population inverted by an external source, as depicted
by the black arrow, which produces electron–hole pairs in it. These pairs relax, as shown by the green arrow, to form the excitons. The
excitons recombine, emitting SPs in the nanoshell. The plasmonic oscillations of the nanoshell stimulate this emission, supplying the
feedback for the spaser action.

spaser can be safely increased by a factor of 2–3 (this will
not adversely effect the spasing as the spaser is fully scalable,
as we show below in section 2.2). Also one should keep in
mind that the nonlocal effects in thin nanoshells are small for
special symmetry reasons [25]. We also consider a number
of examples with significantly higher aspect ratios where the
metal thickness is a few nanometers or larger.

For the sake of numerical illustration of our theory, we will
use the dipole eigenmode (figure 1(a)). There are two basic
ways to place the gain medium: (i) outside the nanoshell, as
shown in panel (c), and (ii) in the core, as in panel (d), which
was originally proposed in [22]. As we have verified, these
two designs lead to comparable characteristics of the spaser.
However, the placement of the gain medium inside the core

illustrated in figure 1(d) has a significant advantage, because
the hot spots of the local field are not covered by the gain
medium and are sterically available for applications.

Note that any l-multipole mode of a spherical particle
is, indeed, 2l + 1-times degenerate. This may make the
spasing mode polarization unstable, like in lasers without
polarizing elements. In reality, the polarization may be
pinned and become stable due to deviations from the perfect
spherical symmetry, which exist naturally or can be introduced
deliberately. A more practical shape for a spaser may be a
nanorod, which has a mode with the stable polarization along
the major axis. However, a nanorod is a more complicated
geometry for theoretical treatment, and we will consider it
elsewhere.
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The level diagram of the spaser gain medium and the
plasmonic metal nanoparticle is displayed in figure 1(e)
along with a schematic of the relevant energy transitions
in the system. The gain medium chromophores may be
semiconductor nanocrystals [4, 26], dye molecules [27, 28],
rare-earth ions [22], or electron–hole excitations of a bulk
semiconductor [17, 18]. For certainty, we will use the
semiconductor science language of electrons and holes.

The pump excites electron–hole pairs in the chromophores
(figure 1(e)), as indicated by the vertical black arrow, which
relax to form excitons. The excitons constitute the two-level
systems that are the donors of energy for the SP emission
into the spasing mode. In vacuum, the excitons would
recombine emitting photons. However, in the spaser geometry,
the photoemission is strongly quenched due to the resonance
energy transfer to the SP modes, as indicated by the red arrows
in the panel. The plasmons in the spaser mode create the high
local fields that excite the gain medium and stimulate more
emission to this mode, which is the feedback mechanism. If
this feedback is strong enough and the lifetime of the spaser
SP mode is long enough, then an instability develops leading
to the avalanche of the SP emission in the spasing mode
and spontaneous symmetry breaking, establishing the phase
coherence of the spasing state. Thus the establishing of spasing
can be called a nonequilibrium phase transition, as in the
physics of lasing.

1.2. Brief overview of the latest progress in spasers and
nanolasers

Since the original theoretical proposal and prediction of the
spaser [4], there has been active development in this field,
both theoretical and experimental. We comment below only
on some representative publications. Among theoretical
developments, a nanolens spaser has been proposed [29],
which possesses a nanofocus (‘the hottest spot’) of the local
fields. In [4, 29], only the necessary condition of spasing has
been established on the basis of the perturbation theory.

There have been theories published describing the spaser
(or, ‘nanolaser’ as it is sometimes called) phenomenologically,
on the basis of classic linear electrodynamics by considering
the gain medium as a dielectric with a negative imaginary
part of the permittivity [22, 30–32]. Such electrodynamic
approaches do not take into account the nature of the spasing
as a spontaneous symmetry breaking. This leads to principal
differences of their results from the present microscopic
quantum mechanical theory in the region of spasing, as we
discuss below in section 3.1 in conjunction with figure 2.
Note that before the spasing threshold, the above-mentioned
phenomenological theories are, in principle, applicable. There
has also been a theoretical publication on a bowtie spaser
(nanolaser) with electrical pumping [33]. It is based on balance
equations and only the CW spasing generation intensity is
described. Yet another theoretical development has been a
proposal of the lasing spaser [34], which is made of a planar
array of spasers. The theoretical publications mentioned above
in this paragraph deal with the CW regime. In contrast, in this
article we are most interested in the ultrafast behavior of the
spaser.

There has also been a theoretical proposal of a spaser
(‘nanolaser’) consisting of a metal nanoparticle coupled to
a single chromophore [35]. In this paper, a dipole–dipole
interaction is illegitimately used at very small distances r
where it has a singularity (diverging for r → 0), leading to
a dramatically overestimated coupling with the SP mode. As a
result, a completely unphysical prediction of CW spasing due
to a single chromophore has been obtained [35]. In contrast,
our theory is based on the full (exact) field of the spasing SP
mode. As our results of section 3 below show, hundreds of
chromophores per metal nanoparticle are realistically requited
for the spasing even under the most favorable conditions.

There has been a vigorous experimental quest toward
the spaser. Stimulated emission of SPPs has been
observed in a proof-of-principle experiment using pumped
dye molecules as an active (gain) medium [27]. There
have also been later experiments that demonstrated strong
stimulated emission compensating a significant part of the SPP
loss [28, 36–38]. As a step toward the lasing spaser, the
first experimental demonstration of compensating Joule losses
in a metallic photonic metamaterial using optically pumped
PbS semiconductor quantum dots has been reported [26]. In
another development, a tunable free-electron light nanosource
(‘light well’) has been demonstrated [39], which is based
on spontaneous emission in a periodically layered metal–
dielectric structure. There have also been experimental
investigations reporting the stimulated emission effects of SPs
in plasmonic metal nanoparticles surrounded by gain media
with dye molecules [40, 41]. An electrically pumped nanolaser
with a semiconductor gain medium has been demonstrated [18]
where the lasing modes are SPPs. A nanolaser with an
optically pumped semiconductor gain medium and a hybrid
semiconductor silver SPP waveguide has been demonstrated
with an extremely tight transverse mode confinement [19].

Finally, an observation has been reported of a true spaser,
by Noginov et al [16]. This spaser is a chemically synthesized
gold nanosphere of radius 7 nm surrounded by a dielectric shell
of 21 nm outer radius containing immobilized dye molecules,
which is sometimes referred to as a ‘Cornell nanodot’. Under
nanosecond optical pumping in the absorption band of the
dye, this spaser develops a relatively narrow spectrum and
intense visible emission that exhibits a pronounced threshold
in pumping intensity. The observed characteristics of this
spaser are in excellent qualitative agreement and can be fully
understood on the basis of the corresponding theoretical results
obtained below in section 3.1.

This article is organized as follows. In section 2.1
for the case of the spaser, we formulate quantum density
matrix equations (also called in the literature the optical Bloch
equations). In section 2.2 we consider these equations for a
stationary (CW) case where we find the conditions of spasing,
the population of the SPs in the spasing mode, and the spasing
line shape. In section 3.1 we illustrate the spasing curve and
spectral composition of the spaser generation. In section 3.1
we describe the CW spaser as a bistable nanodevice. The
major results of this article regarding the ultrafast kinetics
of the spaser as a generator and quantum nanoamplifier are
presented in section 4. We briefly discuss the results obtained
and conclude in section 5.
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2. Equations for the spaser

2.1. Quantum density matrix (optical Bloch) equations for the
spaser

The SP eigenmodes ϕn(r) are described by a wave equation
(with homogeneous boundary conditions) [4, 20]

∇�(r)∇ϕn(r) = sn∇2ϕn(r), (1)

where n is the mode number, sn is corresponding eigenvalue,
and �(r) is the characteristic function equal to 1 for r in the
metal component and 0 for r in the dielectric. Note that the
eigenvalues sn are all real and contained in the range 1 �
sn � 0. The eigenmodes are normalized by an integral over the
volume V of the system,

∫
V |∇ϕn(r)|2 d3r = 1. The physical

frequency ωn of the SPs is defined by an equation Re[s(ωn)] =
sn , where s(ω) = εd/[εd − εm(ω)] is Bergman’s spectral
parameter, εd is the permittivity of the ambient dielectric, and
εm(ω) is the metal permittivity.

The electric field operator5 of the quantized SPs is [4]

E(r) = −
∑

n

An∇ϕn(r)(ân+â†
n), An =

(
4π h̄sn

εds′
n

)1/2

,

(2)
where â†

n and ân are the SP creation and annihilation operators,
and s ′

n = Re[ds(ωn)/dωn].
The spaser Hamiltonian has the form

H = Hg + h̄
∑

n

ωnâ†
n ân −

∑

p

E(rp)d(p), (3)

where Hg is the Hamiltonian of the gain medium, p is an index
(label) of a gain medium chromophore, rp is its coordinate
vector, and d(p) is its dipole moment operator. In this
paper, we will treat the active medium quantum mechanically
but the SPs quasiclassically, considering ân as a classical
quantity (c-number) an with time dependence given by an =
a0n exp(−iωt), where a0n is a slowly varying amplitude. The
number of coherent SPs per spasing mode is then given by
Np = |a0n|2. This approximation neglects the quantum
fluctuations of the SP amplitudes. However, when necessary,
we will take into account these quantum fluctuations, in
particular, to describe the spectrum of the spaser.

Introducing ρ(p) as the density matrix of a pth
chromophore, we can find its equation of motion in a
conventional way by commutating it with the Hamiltonian (3)
as ih̄ρ̇(p) = [ρ(p), H ], where the dot denotes the
temporal derivative. We will use the standard rotating
wave approximation (RWA), which only takes into account
the resonant interaction between the optical field and
chromophores. We denote as |1〉 and |2〉 the ground and
excited states of a chromophore, with the transition |2〉 � |1〉
resonant to the spasing plasmon mode n. In this approximation,
the time dependence of the non-diagonal elements of the
density matrix is (ρ(p))12 = ρ̄

(p)

12 exp(iωt), and (ρ(p))21 =
ρ̄

(p)∗
12 exp(−iωt), where ρ̄

(p)

12 is a time-independent amplitude

5 Note that we have corrected a misprint in [4], replacing the coefficient 2π

by 4π .

defining the coherence (polarization) for the |2〉 � |1〉 spasing
transition in a pth chromophore of the gain medium.

Introducing a rate constant �12 to describe the polarization
relaxation and a difference n(p)

21 = ρ
(p)

22 −ρ
(p)

11 as the population
inversion on this spasing transition, we derive an equation of
motion for the non-diagonal element of the density matrix as

˙̄ρ(p)

12 = −[i (ω − ω12) + �12]ρ̄(p)

12 + in(p)

21 �
(p)∗
12 , (4)

where �
(p)

12 = −And(p)

12 ∇ϕn(rp)a0n/h̄ is the Rabi frequency

for the spasing transition in a pth chromophore, and d(p)

12 is the
corresponding transitional dipole element. Note that always
d(p)

12 is either real or can be made real by a proper choice of the
quantum state phases, making the Rabi frequency �

(p)

12 also a
real quantity.

An equation of motion for n p
21 can be found in a standard

way by commutation with H . To provide conditions for the
population inversion (n p

21 > 0), we imply existence of a third
level. For simplicity, we assume that it very rapidly decays into
the excited state |2〉 of the chromophore, so its own population
is negligible. It is pumped by an external source from the
ground state (optically or electrically) with some rate that we
will denote as g. In this way, we obtain the following equation
of motion:

˙̄n(p)

21 = −4 Im[ρ̄(p)

12 �
(p)

21 ] − γ2(1 + n(p)

21 ) + g(1 − n(p)

21 ), (5)

where γ2 is the decay rate |2〉 → |1〉.
The stimulated emission of the SPs is described as their

excitation by the coherent polarization of the gain medium.
The corresponding equation of motion can be obtained using
Hamiltonian (3) and adding the SP relaxation with a rate of γn

as
ȧ0n = [i(ω − ωn) − γn]a0n + i

∑

p

ρ
(p)∗
12 �

(p)

12 . (6)

Another relevant process is spontaneous emission of SPs
by a chromophore into a spasing SP mode. The corresponding
rate γ

(p)

2 for a chromophore at a point rp can be found in a
standard way using the quantized field (2) as

γ
(p)

2 = 2
A2

n

h̄γn
|d12∇ϕn(rp)|2 (�12 + γn)

2

(ω12 − ωn)2 + (�12 + γn)2
. (7)

As in the Schawlow–Townes theory of laser linewidth, this
spontaneous emission of SPs leads to the diffusion of the phase
of the spasing state. This defines the width γs of the spasing
line as

γs =
∑

p(1 + n(p)

21 )γ
(p)

2

2(2Np + 1)
. (8)

This width is small for a case of developed spasing when
Np 	 1. However, for Np ∼ 1, the predicted width may
be too high because the spectral diffusion theory assumes that
γs � γn . To take into account this limitation in a simple way,
we will interpolate to find the resulting spectral width �s of the
spasing line as �s = (γ −2

n + γ −2
s )−1/2.

We will also examine the spaser as a bistable (logical)
amplifier. One of the ways to set the spaser in such a mode
is to add a saturable absorber. This is described by the same
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equations (4)–(6) where the chromophores belonging to the
absorber are not pumped by the external source directly, i.e.,
for them in equation (5) one has to set g = 0.

Numerical examples are given for a silver nanoshell where
the core and the external dielectric have the same permittivity
of εd = 2; the permittivity of silver is adopted from [42].
The following realistic parameters of the gain medium are
used (unless indicated otherwise): d12 = 1.5 × 10−17 esu,
h̄�12 = 10 meV, γ2 = 4 × 1012 s−1 (this value takes into
account the spontaneous decay into SPs), and the density of
the gain medium chromophores is ρ = 2.4 × 1020 cm−3,
which is realistic for dye molecules but may be somewhat
high for the semiconductor quantum dots that were proposed
as the chromophores [4] and used in experiments [26]. We
will assume a dipole SP mode and chromophores situated
in the core of the nanoshell as shown in figure 1(d). This
configuration is of advantage both functionally (because the
region of the high local fields outside the shell is accessible
for various applications) and computationally (the uniformity
of the modal fields makes the summation of the chromophores
trivial, thus greatly facilitating numerical procedures).

2.2. Equations for the stationary (CW) regime

Physically, the spaser action is a result of spontaneous symme-
try breaking when the phase of the coherent SP field is estab-
lished from the spontaneous noise. Mathematically, the spaser
is described by homogeneous differential equations (4)–(6).
These equations become homogeneous algebraic equations for
the stationary (or continuous wave (CW)) case. They always
have a trivial, zero solution. However, when their determi-
nant vanishes, they also possess a nontrivial solution describing
spasing, whose condition is

(ωs − ωn + iγn)
−1(ωs − ω21 + i�12)

−1
∑

p

|�̃(p)

12 |2n(p)

21 = −1,

(9)
where �̃

(p)

12 = −And(p)

12 ∇ϕn(rp)/h̄ is the single-plasmon Rabi

frequency. The population inversion of a pth chromophore n(p)

21
is explicitly expressed as

n(p)

21 = (g − γ2)

× {g + γ2 + 4Nn |�̃(p)

12 |2/[(ωs − ω21)
2 + �2

12]}−1. (10)

From the imaginary part of equation (9) we immediately
find the spasing frequency

ωs = (γnω21 + �12ωn)/(γn + �12), (11)

which generally does not coincide with either the gain
transition frequency ω21 or the SP frequency ωn, but is between
them (this is a frequency walk-off phenomenon similar to
that of laser physics). Substituting equation (11) back into
equations (9)–(10), we obtain a system of equations

(γn + �12)
2

γn�12[(ω21 − ωn)2 + (�12 + γn)2]
∑

p

|�̃(p)

12 |2n(p)

21 = 1, (12)

n(p)

21 = (g − γ2)

[

g + γ2 + 4Nn |�̃(p)

12 |2(�12 + γn)

(ω12 − ωn)2 + (�12 + γn)2

]−1

.

(13)

This system defines the stationary (CW) number of SPs per
spasing mode Nn .

Since n(p)

21 � 1, from equations (12) and (13) we
immediately obtain a necessary condition for the existence of
spasing:

(γn + �12)
2

γn�12[(ω21 − ωn)2 + (�12 + γn)2]
∑

p

|�̃(p)

12 |2 � 1. (14)

This expression is fully consistent with [4]. The following
order of magnitude estimate of this spasing condition has a
transparent physical meaning and is of heuristic value:

d2
12 QNc

h̄�12Vn
� 1, (15)

where Q = ω/γn is the quality factor of SPs, Vn is the
volume of the spasing SP mode, and Nc is the number of
gain medium chromophores within this volume. Deriving this
estimate, we have neglected the detuning, i.e., set ω21−ωn = 0.
We also used the definitions of An of equation (2) and
�̃

(p)

12 given after equation (9), and the estimate |∇ϕn(r)|2 ∼
1/V following from the normalization of the SP eigenmodes∫ |∇ϕn(r)|2 d3r = 1 of [20]. The result of equation (15) is,
indeed, in agreement with [4] where it was obtained in slightly
different notations.

It follows from equation (15) that for the existence of
spasing it is beneficial to have a high quality factor Q, a
high density of the chromophores, and a large transition dipole
(oscillator strength) of the chromophore transition. The small
modal volume Vn (at a given number of the chromophores Nc)
is beneficial for this spasing condition: physically, it implies
strong feedback in the spaser. Note that for the given density
of the chromophores ρc = Nc/Vn, this spasing condition does
not explicitly depend on the spaser size, which opens up the
possibility of spasers of a very small size limited from the
bottom by only the nonlocality radius lnl ∼ 1 nm. Another
important property of equation (15) is that it implies a quantum
mechanical nature of spasing and spaser amplification: this
condition essentially contains the Planck constant h̄ and, thus,
does not have a classical counterpart. Note that in contrast to
lasers, the spaser theory and equation (15) in particular do not
contain the speed of light, i.e., they are quasistatic.

3. The spaser in the mode of a continuous wave
nanoscale quantum generator

3.1. Kinetics of the CW spaser

The ‘spasing curve’, i.e., the dependence of the coherent SP
population Nn on the excitation rate g, obtained by solving
equations (12) and (13), is shown in figure 2(a) for four kinds
of silver nanoshells with the frequencies of the spasing dipole
modes as indicated, which are in the range from near-IR
(h̄ωs = 1.2 eV) to mid-visible (h̄ωs = 2.2 eV). In all cases,
there is a pronounced threshold of the spasing at an excitation
rate gth ∼ 1012 s−1. Soon after the threshold, the dependence
Nn(g) becomes linear, which means that every quantum of
excitation added to the active medium with a high probability
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Figure 2. Spaser SP population and spectral characteristics in the stationary state. The computations are done for a silver nanoshell with the
external radius R2 = 12 nm; the detuning of the gain medium from the spasing SP mode is h̄(ω21 − ωn) = −0.02 eV. The other parameters
are indicated in section 2. (a) Number Nn of plasmons per spasing mode as a function of the excitation rate g (per chromophore of the gain
medium). Computations are done for the dipole eigenmode with the spasing frequencies ωs as indicated, which were chosen by the
corresponding adjustment of the nanoshell aspect ratio. (b) Population inversion n12 as a function of the pumping rate g. The color coding of
the lines is the same as in panel (a). (c) The spectral width �s of the spasing line (expressed as h̄�s in meV) as a function of the pumping rate
g. The color coding of the lines is the same as in panel (a). (d)–(f) Spectra of the spaser for the pumping rates g expressed in the units of the
threshold rate gth, as indicated in the panels. The curves are color coded and scaled as indicated.

is stimulated to be emitted as a SP, adding to the coherent SP
population.

While this is similar to the case for conventional lasers,
there is a dramatic difference for the spaser. For the lasers
a similar relative rate of the stimulated emission is achieved
at a photon population of ∼1018–1020, while for the spaser
the SP population is Nn � 100. This is due to the much
stronger feedback in spasers because of the much smaller
modal volume Vn—see the discussion of equation (15). The
shape of the spasing curves of figure 2(a) (the well-pronounced
threshold with the linear dependence almost immediately
above the threshold) is in excellent qualitative agreement with
the experiment [16]. Note that the recently demonstrated SPP
nanolaser with a tight transverse confinement of the lasing
modes does not exhibit a pronounced threshold [19], in contrast
to the spaser.

The population inversion number n21 as a function of the
excitation rate g is displayed in figure 2(b) for the same set of
frequencies (and with the same color coding) as in panel (a).
Before the spasing threshold, n21 increases with g to become
positive with the onset of the population inversion just before

the spasing threshold. For higher g, after the spasing threshold
is exceeded, the inversion n21 becomes constant (inversion
pinning). The pinned levels of the inversion are very low,
n21 ∼ 0.01, which again is due to the very strong feedback
in the spaser.

The spectral width �s of the spaser generation is due to
the phase diffusion of the quantum SP state caused by the
noise of the spontaneous emission of the SPs into the spasing
mode, as described by equation (8). This width is displayed
in figure 2(c) as a function of the pumping rate g. At the
threshold, �s is that of the SP line γn, but for stronger pumping,
as the SPs accumulate in the spasing mode, it decreases ∝N−1

n ,
as given by equation (8). This decrease of �s reflects the higher
coherence of the spasing state with the increased number of SP
quanta and, correspondingly, lower quantum fluctuations. This
is similar to the lasers as described by the Schawlow–Townes
theory [43].

The spasing developed in a dipole SP mode will show
itself in the far field as an anomalously narrow and intense
radiation line. The shape and intensity of this line in relation
to the lines of the spontaneous fluorescence of the isolated
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Figure 3. Bistability in a spaser with a saturable absorber in a stationary spasing state. (a) Dependence of the SP population number Nn in the
spasing mode on the pumping rate g for different concentrations ρa of the saturable absorber. The curves are color coded corresponding to ρa

shown in units of the concentration ρ of the active medium chromophores. The black line shows the threshold curve (separatrix) between the
bistable and uniquely stable solutions. (b) The dependence of the population inversion n21 on the pumping rate g for the spasing states. The
color coding is the same as in panel (a). Note that the lower branches of the curves in this panel correspond to the upper ones in panel (a) and
vice versa. (c) The same as panel (a) but only the stable branches of the curves are displayed, illustrating the physical behavior of the spaser
population Nn . Note that one of the stable branches coincides with the horizontal axis. The vertical arrows illustrate the hysteretic transitions
between the two stable branches for ρa = 3ρ. (d) The same as panel (c) but for the population inversion n21. The black curve starting with
n21 = −1 shows a trivial stable solution corresponding to the absence of spasing (Nn = 0).

gain medium and its SP-enhanced fluorescence line in the
spaser are illustrated in figures 2(d)–(f). Note that for the
system under consideration, there is a 20 meV red shift of
the gain medium fluorescence with respect to the SP line
center. It is chosen so as to illustrate the spectral walk-
off of the spaser line. For one per cent in the excitation
rate above the threshold of the spasing (panel (d)), a broad
spasing line (red color) appears, comparable in intensity to
the SP-enhanced spontaneous fluorescence line (blue color).
The width of this spasing line is approximately the same as
that of the fluorescence, but its position is shifted appreciably
(spectral walk-off) toward the isolated gain medium line (green
color). For pumping twice more intense (panel (e)), the
spaser line radiation dominates, but its width is still close to
that of the SP line due to significant quantum fluctuations of
the spasing state phase. Only when the pumping rate is an
order of magnitude above the threshold does the spaser line
strongly narrow (panel (f)), and it also completely dominates
the spectrum of the radiation. This is a regime of small
quantum fluctuations, which is desired in applications.

These results for the spasing region are different in the
most dramatic way from those for previous phenomenological
models, which are based on the consideration of a
gain medium that has negative imaginary part of its
permittivity plus a lossy metal nanosystem, described purely
electrodynamically [22, 31]. For instance, in a ‘toy
model’ [31], the width of the resonance line tends to zero
at the threshold of spasing and then broadens again. This
distinction of the present theory is due to the nature of the

spasing as a spontaneous symmetry breaking (nonequilibrium
phase transition) leading to the establishing of the coherent
SP state. The spasing state with its spontaneous symmetry
breaking cannot be obtained in electrodynamics, which is a
linear response theory, from the initial, non-spasing state of the
system. The SP population in the spasing state is determined
by nonlinear saturation of the gain. This state is influenced
by the phase relaxation due to the spontaneous SP emission
into the spasing mode leading to the finite spectral width of the
spasing line �s ∝ N−1

n . Therefore the present theory requires
a quantum mechanical consideration of the gain medium.
Note that below the spasing threshold, the phenomenological
theories [22, 32] are applicable, describing such important
effects as loss compensation in metamaterials [44].

3.2. The bistable CW spaser

Bistable devices in microelectronics are MOSFET-based
devices that have two stable states describing logical 1 and 0.
Their output ‘logical’ level changes when the input exceeds
a certain threshold value. Below we show that the spaser
can operate as a bistable device on the basis of the quantum
amplification.

Generally, bistability is a result of nonlinearity in the
system. We examine below the bistability in the spaser where
the nonlinearity is due to the presence of a saturable absorber.
Such an absorber is a chromophore whose absorption overlaps
with the spasing line, but which does not directly absorb the
radiation that pumps the spaser. Formally, it is described by
equations (12) and (13) where the pumping rate g = 0 for
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the index p corresponding to the saturable absorber. We will
assume that this absorber is distributed in space in the same
way as for the gain chromophores but with a different density
ρa.

Results of a numerical solution of equations (12) and (13)
for different values of ρa relative to the concentration ρ of the
gain medium chromophores are shown in figure 3. Panel (a)
displays the dependence of the SP population number Nn in
the spasing mode on the pumping rate g, and panel (b) shows
the corresponding dependence of the population inversion n21

of the gain medium. We note first that there always exists also
a trivial, non-spasing solution Nn = 0. For values of g above
critical (depending on ρa), there are also nontrivial solutions.
For ρa > 10−3ρ, these nontrivial solutions consist of two
branches: high Nn and low Nn . Note that the high Nn branch
in panel (a) corresponds to the low n21 branch in panel (b), and
vice versa.

Thus it appears that there is a tristability. However, this
impression is incorrect. The lower branches in figure 3(a) (and,
correspondingly, the upper branches in panel (b)) describe
unstable solutions that are not realizable physically. This can
be understood already from the fact that along these branches
the SP population decreases with increasing pumping, which is
completely unphysical.

It is a bistability, not the tristability, which takes place in
actuality. This is illustrated in figures 3(c) and (d) obtained by
isolating the stable branches of the solutions. As one can see,
with an increase of the pumping rate g, the solutions appear at
critical pumping rates that increase with the saturable absorber
concentration ρa. As the critical g for a given ρa is reached,
the branch with nonzero Nn appears with a discontinuity. Both
the Nn = 0 and Nn > 0 branches are stable and can retain
their states indefinitely. The transition between these two
stable states can be induced by either adding SP quanta to or
removing them from the spasing mode, as illustrated by arrows
for ρa = 3ρ. This shows that a spaser with a saturable absorber
can function as both a nanoscopic memory cell and a bistable
device on the basis of quantum amplification. The dynamics of
such a device is femtosecond, as we show below in section 4.

In the bistable case there is no perfect pinning of the
population inversion n21, as figure 3(d) shows. When the
pumping rate g is increased, the system moves along the stable
no-spasing (Nn = 0) solution denoted by the black line,
where the inversion n21 significantly overshoots its values for
the spasing branches (colored lines). When the transition to
spasing occurs, induced, e.g., by an injection of SP quanta, it
is always discontinuous, as the vertical arrows indicate. Along
the spasing (Nn > 0) branches (colored lines), the inversion
counter intuitively decreases with increased pumping due to
the stimulated emission.

It is instructive to compare the behavior of the spaser
shown above in figure 3 (see also its discussion) with the
corresponding behavior of lasers. As we have already
mentioned in section 1, there are similarities and also
substantial differences. A principal source of these differences
is due to the fact that the spaser SP modes are much more
strongly localized than the photonic modes in conventional
lasers and even the SPP modes in the nanolasers of [18, 19].

The much smaller modal volume Vn of the spasing SP modes
causes much higher local fields of these SPs (cf figure 1)
and, consequently, much stronger feedback in the spaser—
cf equation (15). Therefore the spaser operates—including
the bistable operation—at a population of SPs many orders of
magnitude smaller (typically, Nn ∼ 100) per spasing mode
as compared to the number of quanta in the resonators of
the conventional lasers (∼1018–1020) and even the polaritonic
nanolasers. Related to this fact are the very high values of
the local fields in the spaser ∼106

√
Nn ∼ 107 V cm−1, as

pointed out above in this paragraph. These strong local fields
and the strong feedback caused by them are also responsible
for the pronounced linear dependence of the SP population
Nn on the pumping rate (see figure 3(c)) and the pronounced
pinning of the population inversion n21 of the gain medium (see
figures 2(b) and 3(d)) in the spasing state.

4. The spaser as an ultrafast quantum nanoamplifier

4.1. The problem of setting the spaser as an amplifier

Now we consider the central point of this article: setting the
spaser as an ultrafast quantum nanoamplifier. As we have
already mentioned in the introduction (section 1), the principal
and formidable problem is that, in contrast to the conventional
lasers and amplifiers in quantum electronics, the spaser has an
inherent feedback that cannot be removed. Thus the spaser
above the spasing threshold will always develop generation
and accumulation of the macroscopic number of coherent SPs
in the spasing mode. This leads to the population inversion
pinning in the CW regime at a very low level—cf figure 2(b).
This CW regime corresponds to the net amplification equal
to zero, which means that the gain exactly compensates the
loss, which condition is expressed by equation (12). This is a
consequence of the nonlinear gain saturation. This holds for
any stable CW generator (including any spaser or laser) and
precludes using them as amplifiers.

We propose two regimes for setting the spaser as a
quantum nanoamplifier. The first is a transient regime based
on the fact that the establishing of the CW regime and the
consequent inversion pinning and total gain vanishing require
some time that is determined mainly by the rate of the quantum
feedback, but depends also on the relaxation rates of the SPs
and the gain medium. After the population inversion is created
by the onset of pumping and before the spasing spontaneously
develops, as we show below in this section, there is a time
interval of approximately 250 fs, during which the spaser
provides usable (and as predicted, quite high) amplification.

The second way to set the spaser as a quantum nanoampli-
fier is a bistable regime that is achieved by introducing a sat-
urable absorber, which prevents the spontaneous spasing. Then
injection of a certain above-threshold amount of SP quanta will
saturate the absorber and initiate the spasing. Such a bistable
quantum amplifier will be considered in the next subsection.
The bistability is the most promising regime which allows not
only the functioning of the spaser as an ultrafast threshold (log-
ical) amplifier, but also a quasi-CW bistability where the spaser
works as a memory element (cf section 3.2) with an ultrafast
switching time.
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Figure 4. Ultrafast dynamics of the spaser. (a) For a monostable spaser (without a saturable absorber), the dependence of the SP population in
the spasing mode Nn on time t . The spaser undergoes stationary pumping at a rate of g = 5 × 1012 s−1. The color coded curves correspond to
the initial conditions with the different initial SP populations, as shown in the graphs. (b) The same as (a) but for the temporal behavior of the
population inversion n21. (c) Dynamics of a monostable spaser (no saturable absorber) with the pulsed pumping described as the initial
inversion n21 = 0.65. The coherent SP population Nn is displayed as a function of time t . Different initial populations are indicated by color
coded curves. (d) The same as (c) but for the corresponding population inversion n21. (e) The same as (a) but for a bistable spaser with the
saturable absorber for the concentration ρa = 0.66ρ. (f) The same as (b) but for the bistable spaser. (g) The same as (e) but for the pulsed
pumping with the initial inversion n21 = 0.65. (h) The same as (g) but for the corresponding population inversion n21.

The temporal behavior of the spaser has been found by
direct numerical solution of equations (4)–(6). This solution
is facilitated by the fact that in the model under consideration
all the chromophores experience the same local field inside the
nanoshell, and there are only two kinds of such chromophores:
belonging to the gain medium and to the saturable absorber, if
it is present.

4.2. The monostable spaser as a nanoamplifier in the
transient regime

In this subsection we consider a monostable spaser in a
transient regime. This implies that no saturable absorber is

present. We will consider two pumping regimes: stationary
and pulsed.

Starting with the stationary regime, we assume that the
pumping at a rate (per chromophore) of g = 5 × 1012 s−1

starts at a moment of time t = 0 and stays constant after that.
Immediately at t = 0, a certain number of SPs are injected into
the spaser. We are interested in its temporal dynamics from this
moment on.

The dynamical behavior of the spaser under this pumping
regime is illustrated in figures 4(a) and (b). As we see, the
spaser, which starts from an arbitrary initial population Nn ,
rather rapidly, within a few hundred femtoseconds approaches
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the same stationary (‘logical’) level. At this level, an SP
population of Nn = 67 is established, while the inversion is
pinned at a low level of n21 = 0.02. On the way to this
stationary state, the spaser experiences relaxation oscillations
in both the SP numbers and inversion, which have a tendency
to oscillate out of phase (compare panels (a) and (b)). This
temporal dynamics of the spaser is quite complicated and
highly nonlinear (anharmonic). It is controlled not by a single
relaxation time but by a set of the relaxation rates. Clearly,
among these are the rate of energy transfer from the gain
medium to the SPs and the relaxation rates of the SPs and the
chromophores.

In this mode, the main effect of the initial injection of the
SPs (described theoretically as different initial values of Nn) is
on the interval of time that is required for the spaser to reach the
final (CW) state. For very small Nn , which in practice can be
supplied by the noise of the spontaneous SP emission into the
mode, this time is approximately 250 fs (cf the corresponding
SP relaxation time being less then 50 fs). In contrast, for
the initial values of Nn = 1–5, this time shortens to 150 fs.
Whether this is a practically usable difference remains to be
seen at more advanced stages of development.

Now consider the second regime: pulsed pumping. The
gain medium population of the spaser is inverted at t = 0
to saturation with a short (much shorter than 100 fs) pump
pulse. Simultaneously, at t = 0, some number of plasmons
are injected (say, by an external nanoplasmonic circuitry). In
response, the spaser should produce an amplified pulse of the
SP excitation. Such a function of the spaser is illustrated in
figures 4(c) and (d).

As we see from panel (c), independently of the initial
number of SPs, the spaser always generates a series of SP
pulses, of which only the first pulse is large (at or above
the logical level of Nn ∼ 100). (An exception is a case of
little practical importance when the initial Nn = 120 exceeds
this logical level, when two large pulses are produced.) The
underlying mechanism of such a response is the rapid depletion
of the inversion seen in panel (d), where energy is dissipated
in the metal of the spaser. The characteristic duration of the
SP pulse, ∼100 fs, is defined by this depletion, controlled by
the energy transfer and SP relaxation rates. This time is much
shorter than the spontaneous decay time of the gain medium.
This acceleration is due to the stimulated emission of the
SPs into the spasing mode (which can be called a ‘stimulated
Purcell effect’). There is also a pronounced trend: the lower
the initial SP population Nn , the later the spaser produces the
amplified pulse. In a sense, this spaser functions as a converter
of pulse amplitude to time delay.

4.3. The bistable spaser (with saturable absorber) as an
ultrafast nanoamplifier

Now let us consider the most important point of this
article: a bistable spaser as a quantum threshold (‘logical’)
nanoamplifier. Such a spaser contains a saturable absorber
mixed with the gain medium with parameters indicated at
the end of section 2.1. In particular, the concentration of
the saturable absorber ρa = 0.66ρ. This case of a bistable

spaser amplifier is of a particular interest because in this
regime the spaser comes as close as possible in its functioning
to the semiconductor-based (mostly, MOSFET-based) digital
nanoamplifiers. As in the previous subsection, we will consider
two cases: stationary pumping and pumping with short pulses.

We again start with the case of the stationary pumping at
a rate of g = 5 × 1012 s−1. We show in figures 4(e) and (f)
the dynamics of such a spaser. For a small initial population
Nn = 5 × 10−3 simulating the spontaneous noise, the spaser
is rapidly (faster than in 50 fs) relaxing to zero population
(panel (e)), while its gain medium population is equally rapidly
approaching a high level (panel (f)) n21 = 0.65 that is defined
by the competition of the pumping and the enhanced decay into
the SP mode (the purple curves). This level is so high because
the spasing SP mode population vanishes and the stimulated
emission is absent. After reaching this stable state (which one
could call, say, ‘logical 0’), the spaser stays in it an indefinitely
long time despite the continuing pumping.

In contrast, for initial values Nn of the SP population large
enough (for instance, for Nn = 5, as shown by the blue curves
in figures 4(e) and (f)), the spaser tends to the ‘logical 1’
state where the stationary SP population reaches the value of
Nn ≈ 60. Due to the relaxation oscillations, it actually exceeds
this level within a short time of �100 fs after the seeding with
the initial SPs. As the SP population Nn reaches its stationary
(CW) level, the gain medium inversion n21 is pinned down at
a low level of a few per cent, as is typical for the CW regime
of the spaser. This ‘logical 1’ state also persists indefinitely, as
long as the inversion is supported by the pumping.

There is a critical curve (separatrix) that divides the two
stable dynamics types (leading to the logical levels of 0 and
1). For the present set of parameters this separatrix starts
with the initial population of Nn ≈ 1. For a value of the
initial Nn slightly below 1, the SP population Nn experiences
a slow (hundreds of fs in time) relaxation oscillation but
eventually relaxes to zero (figure 4(e), black curve), while the
corresponding chromophore population inversion n21 relaxes
to the high value n21 = 0.65 (panel (f), black curve). In
contrast, for a value of Nn slightly higher than 1 (light blue
curves in panels (e) and (f)), the dynamics is initially close to
the separatrix but eventually the initial slow dynamics tends to
the high SP population and low chromophore inversion through
a series of relaxation oscillations. The dynamics close to the
separatrix is characterized by a wide range of oscillation times
due to its highly nonlinear character. The initial dynamics is
slowest (the ‘decision stage’ of the bistable spaser that lasts
�1 ps). The ‘decision time’ is diverging infinitesimally close
to the separatrix, as is characteristic of any threshold (logical)
amplifier.

The gain (amplification coefficient) of the spaser as a
threshold (logical or bistable) amplifier is the ratio of the high
CW level to the threshold level of the SP population Nn . For
this specific spaser with the chosen set parameters, this gain is
≈60, which is more than sufficient for the digital information
processing. Thus this spaser can make a high gain, ∼10 THz
bandwidth logical amplifier or dynamical memory cell with
excellent prospects of applications.

The last but probably the most important regime to
consider is that of the pulsed pumping of the bistable spaser. In
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this case, the population inversion (n21 = 0.65) is created by a
short pulse at t = 0 and simultaneously initial SP population
Nn is created. Both are emulated as the initial conditions in
equations (4)–(6). The corresponding results are displayed in
figures 4(g) and (h).

When the initial SP population exceeds the critical one of
Nn = 1 (the blue, green, and red curves), the spaser responds
by generating a short (duration less than 100 fs) pulse of the SP
population (and the corresponding local fields) within a time
of �100 fs (panel (g)). Simultaneously, the inversion is rapidly
(within ∼100 fs) exhausted (panel (h)).

In contrast, when the initial SP population Nn is less than
the critical one (i.e., Nn < 1 in this specific case), the spaser
rapidly (within a time of �100 fs) relaxes as Nn → 0 through
a series of relaxation oscillations—see the black and magenta
curves in figure 4(g). The corresponding inversion decays in
this case almost exponentially with a characteristic time ∼1 ps
determined by the enhanced energy transfer to the SP mode in
the metal—see the corresponding curves in panel (h). Note that
the SP population decays faster due to the threshold nature of
spasing.

Gold as the spaser nanoplasmonic core metal, which is
used in experiments [16], has a relaxation rate an order of
magnitude higher than that of silver. Therefore it is plausible
that a gold-core spaser as an amplifier will have a bandwidth of
∼100 THz. We will consider such a system elsewhere. Taking
into account that the local fields produced by the spaser are
concentrated within a few tens of nanometers in its vicinity,
these are parameters that hold promise of many applications
in the fundamental science and coming digital and analog
femtosecond technologies.

5. Discussion and conclusion

We have demonstrated the principal possibilities of the spaser
functioning as an ultrafast nanoamplifier of the local optical
fields. In doing so we have had to overcome a principal
and formidable problem. Any spaser has inherent feedback.
Consequently, the spaser as proposed initially [4] and observed
experimentally [16] rapidly, on the femtosecond timescale,
will generate the coherent population of the SPs and approach
the CW regime. In this regime, the net gain (the saturated
amplification minus loss) is exactly zero (the same as for
lasers). Thus CW spasers (or CW lasers, for that matter) cannot
fundamentally be used as amplifiers. In the conventional
optical amplifiers, in contrast to lasers, the feedback is
deliberately removed and any parasitic feedback (scattering,
etc) is carefully minimized to prevent the spontaneous
generation. Such a regime is not possible for the spaser as it
is currently known. In this article, we have demonstrated two
ways to set a spaser as a nanoamplifier: (i) the conventional
monostable spaser can amplify in the transient ultrafast
(femtosecond) regime before the CW generation is established;
(ii) the spaser with the saturable absorber can become bistable
and function as a threshold (logical) amplifier with ultrafast
(femtosecond) switching times.

We have developed quantum theory of the spaser based
on density matrix (optical Bloch) equations. The spaser

described is a nanoparticle that consists of a metal core and
a gain (active) medium. The metal core plays the role of the
resonator (‘cavity’) whose states are the localized SPs, which
we have quantized. The gain medium is described completely
quantum mechanically taking into account the excitation,
decay, and dephasing processes. The main approximation that
we have employed is that the SP population number Nn is
treated as a classical variable. This is the same semiclassical
approximation as is most often used in the physics of lasers.
Given the fact that the typical number of SP quanta per spasing
mode is still large enough (Nn ∼ 100), this approximation
appears reasonable and reliable.

Pursuing the goal of the fastest possible operation and the
nanometric size (on the same order as that of microelectronic
MOSFETs), we have deliberately considered spasers whose
size is much less than the radiation wavelength and whose
metal thickness is less than the skin depth. This has allowed
us to use the quasistatic SP eigenmodes as full counterparts
of the electrostatic fields in the transistors. Note that
such a nanoscopic spaser has recently been demonstrated
experimentally [16].

Though the main emphasis of this article is on the
ultrafast dynamics of the spaser as a nanoamplifier of the local
plasmonic fields, the CW regime is described first as the basis
for understanding the ultrafast dynamics. The corresponding
results are illustrated in figure 2. The ‘spasing curve’ (the
dependence of the SP population Nn on the pumping rate)
shows a pronounced threshold and a linear dependence of the
coherent SP population Nn on the pumping rate g (figure 2(a)).
This linear dependence Nn(g) is due to the extremely strong
feedback in the spaser caused by the very strong SP mode
localization. The same effect is responsible for the clipping of
the population inversion in the spasing state to very low levels,
as illustrated in figure 2(b). With the increased pumping,
a higher SP population leads to lower quantum fluctuations
and decreased spectral width of the spasing line, as shown
in figure 2(c). Gradually, a very narrow and intense spasing
line appears in the emission spectrum of the spaser—see
figures 2(d)–(f). This narrow line is indicative of the intense
optical fields that are excited in the vicinity of a spaser—
cf figure 1(a) where the field must be multiplied by a factor of√

Nn . Qualitatively, the linear spasing curve and the narrowing
of the spasing line with the pumping are in full agreement with
the recent experiment [16].

Adding a saturable absorber to the spaser shell, we have
shown that it can work as a bistable device on the basis
of quantum amplification. The corresponding results are
illustrated in figure 3 for a CW operation mode.

The main results of this article concern with ultrafast
processes of amplification in the spaser. These are illustrated
in figure 4. We have shown that a monostable spaser (without a
saturable absorber) performs amplification of the injected SPs
in a transient regime. However, this process only manifests
itself in shorter times to establish the high SP population—
see figures 4(a)–(d) and the corresponding discussion. In this
sense, such a spaser performs the function of an amplitude to
time converter but not a true nanoamplifier.

The most significant results are those related to the
ultrafast amplification in the bistable spaser containing a
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saturable absorber within its gain shell. This amplification
has many similarities with that for semiconductor threshold
(logical) nanoamplifiers based on MOSFETs. Such a spaser
with stationary pumping behaves as an ultrafast nanoscale
bistable device—see the results in figures 4(e) and (f). For
initial conditions not too close to the threshold, it amplifies and
switches with a characteristic time of ∼100 fs. The bistable
spaser with pulsed pumping is a high gain ultrafast pulse
nanoamplifier—see figures 4(g) and (h) and the corresponding
discussion in the previous section. Its typical response time
and pulse length are �100 fs, corresponding to the 10 THz
bandwidth.

For the gold-based spaser, in contrast to the present
silver-based one, the typical switching time should be much
shorter, presumably ∼10 fs corresponding to ∼100 THz
bandwidth. However, the gold-based spasers will work at
a lower SP population due to the higher loss in the metal.
Correspondingly, they will possess lower signal/noise ratio and
wider spectral lines. We will consider such spasers elsewhere.

Concluding, the spaser is the size of the MOSFET [13]
(∼10 nm) and can perform the same function of signal
amplification on the nanoscale. Having a high enough gain, the
spaser can be an active element foundation of highly integrated
nanoplasmonic devices, including ultrafast processors. Based
on metals, it is inherently much faster, by a factor of ∼1000,
than silicon devices, as we have shown above. For the same
reason, it also highly robust environmentally: it can work at
high temperatures, in the presence of microwave and ionizing
radiations, etc. This article has presented quantum theory of
the spaser as a nanoamplifier, which is critically needed for
understanding and utilization of the spaser.
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