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Linear and nonlinear optical susceptibilities of Maxwell Garnett composites:
Dipolar spectral theory
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A theory of linear and nonlinear optical susceptibilites of disordered composites consisting of nanospheres
in a dielectric host~Maxwell Garnett composites! is developed. The theory is based on a spectral representation
in the dipole approximation. Numerical computations are performed in the framework of the dipolar spectral
theory to obtain the linear dielectric function and third-order hypersusceptibility. For the fill factorsf ~from
0.001 to 0.12! considered, our spectral function agrees within the expected 10% error with the previously
published function. We have introduced a material independent spectral representation for hypersusceptibili-
ties. The third-order hypersusceptibilityxc

(3) shows regions of strong enhancement~by up to four orders of
magnitude for a silver composite!. The mean-field theory provides a reasonable approximation only at very low
fill factors (f &1023). For f *0.04, the mean-field theory fails dramatically almost everywhere, except for
distant wings of the spectral contour~very far from optical resonances!. A physical effect responsible for the
failure of the mean-field theories and contributing to the resonant enhancement of nonlinear susceptibilities is
large fluctuations of local fields in the resonant region.@S0163-1829~99!01748-8#
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I. INTRODUCTION

The problem of optical~dipolar! susceptibilities of com-
posites is a long-standing one in physics going back to s
names as Lorentz,1 Maxwell Garnett,2 Brugemann,3 and
Lorentz.4 Generally, the problem is formulated in the follow
ing way. The composite’s geometry is given, and the diel
tric functions and nonlinear susceptibilities of all comp
nents of the composite are specified. In most cases
characteristic size of the geometrical features of the comp
ite is much smaller than optical wavelengths, so that
composite as a whole is viewed as an optically homogene
medium. The problem is to find the dielectric function a
nonlinear susceptibilities of that composite medium.

The Maxwell Garnett~MG! geometry is the one wher
small inclusion particles, usually nanospheres, are embed
in a homogeneous host medium with different dielect
properties. In this paper we consider this geometry and
that of Brugemann, where two components of the compos
are treated equally~either of those can be considered as
host or inclusion component!.

The effect of composite microgeometry~or, rather, nano-
geometry! is often described as that of local fields, i.e., ele
tric fields induced by an exciting radiation at each of t
inclusions that are different from the macroscopic~average!
field in the composite. We consider disordered compos
whose geometry is random. For a MG composite, this me
that the positions of the inclusions are random. For suc
composite, the local fields at every inclusion are random a
consequence of the structural disorder. If a theory negl
such a randomness, i.e., treats all inclusions as being eq
lent, we call it a mean-field theory. We emphasize that lo
fields in a mean-field theory are still functions of coordina
PRB 600163-1829/99/60~24!/17071~13!/$15.00
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Conventionally in mean-field theories, the effects of loc

fields are expressed in terms of the Lorentz field,1,4 a uniform
field that exists in the Lorentz cavity surrounding an inc
sion. This field may exceed the macroscopic field, caus
enhancement of optical responses. Recently, the validity
results obtained using the Lorentz field concept has b
re-evaluated on the basis of a Green’s-function approach
Lagendijk and co-workers.5,6 This research showed that th
Lorentz-Lorenz formula, or its equivalents such as the L
entz relation and Maxwell Garnett formula, can be obtain
consistently using the so-calledindependent scattering ap
proximation. This approach carries out the summation of d
grams containing as many inclusions as required, but ta
each inclusion into account only once. The theory of Refs
and 6 does not invoke such approximations of uncontrolla
accuracy as mean-field approaches or decoupling of hig
order correlation functions. Our results obtained in t
present paper, however, show that for a disordered compo
the Maxwell Garnett formula~or its equivalents! fails in a
resonant region where optical absorption is present. A m
realistic analytic theory by Barreraet al.7 was developed
based on a diagrammatic approach to an expansion of
inverse matrix~resolvent! of coupled-dipole equations. Thi
theory extends beyond the mean-field approximation. It
pends on several approximations, among which is factor
tion of averages of powers~equivalent to some decoupling o
higher correlations! and a selection of diagrams in Dyson
type equations. With these approximations, the theory
Ref. 7 is in good agreement with earlier comput
simulations.8,9 We also note that Refs. 5–9 do not consid
nonlinear optical responses.
17 071 ©1999 The American Physical Society
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A number of published studies devoted to calculations
linear responses of composites have been based on sp
expansion method by Bergman,10,11 Bergman and Stroud,12

Milton,13 and Fuchs, Claro, Barrera, Rojas, and Castillo.14–17

In this paper we will use our dipolar spectral approach18

which is a modification of the general spectral approa
adapted for systems described by the dipole approxima
~see below in Sec. II B!. Solutions in the dipolar spectra
expansion exactly obey general relations such as the op
theorem, dipole sum rule, etc. This automatic complian
with exact properties is due only to the form of the spec
expansion and orthonormality and completeness of the
genvector set. This fact contributes to the numerical stab
of our computations.

In any spectral approach, geometrical and material pr
erties of the composite are completely separated. The lin
responses of a composite are defined by spectral func
g(s) that depends only on geometry, but not on the com
sition of a composite. The composition determines only
value of the spectral parameters in the integral expression
for the susceptibility.12 For the Maxwell Garnett type o
composites, the spectral function has been calculated by
sen and Felderhof19 using multipoles up tol 54 for the fill
factor of the compositef <0.5. We will compare these re
sults to ours in this paper~in Sec. III B!.

The dipolar spectral expansion also provides a powe
method of numerical solution of the problem that we use
the present paper. The advantage of such a method i
numerical stability. This is owed to a significant degree
the fact that the exact analytical properties of the solution
already taken into account by the mere structure of the s
tral expansion, which is preserved irrespectively of the
merical precision achieved.

Nonlinear optical responses of a Maxwell Garnett co
posite for an arbitrary polarization of light have been calc
lated by Sipe and Boyd.20 Their paper consistently describe
local ~mesoscopic! fields inside a composite varying i
space, but did not take into account variations of those fie
from one inclusion to another. Hence, in our classificati
Ref. 20 is a mean-field theory. In the present paper, we
calculate the same responses in a different formulation of
mean-field approximation. The linear optical response
nonlinear responses for the case of nonlinearity in inclusi
are identical to those of Ref. 20. In the case of a nonlin
host, our results are close, though not completely identi
to those of Ref. 20.

We also note that experimental investigations of optica
nonlinear composites have recently been done.21,22 The re-
sults obtained in Refs. 21 and 22 are interpreted on the b
of the theory of Ref. 20. We show in this paper that for
factors of composites studied in Refs. 21 and 22, the me
field approach is indeed a very good one.

Nonlinear susceptibilities of composites have been
subject of a number of studies.12,23–26 It has been
shown12,23,24that to find the third-order susceptibilityx (3) for
a linearly polarized light of a composite from those of i
components, one has to know only the local~mesoscopic!
field in the first order in the intensity, i.e., to solve only a
optically-linear problem. The unknown nonlinear~third-
order! field is explicitly eliminated using boundary cond
f
tral
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tions. We use this approach in our numerical calculations
the present paper.

Earlier we used the dipolar spectral expansion to find
enhancement of third-order nonlinear photoprocesses
clusters.26,27 We showed that fluctuations of local fields
space are very large~giant!,27 and are a determining factor o
nonlinear responses. Composites, that are the subject o
present paper, differ from clusters in two respects. Firs
composite has a host medium that can also be optically n
linear. Second, a composite is infinite in all directions. The
distinctions are addressed in this paper. We do not use
coupling of higher-order products of fields as in Ref. 2
because such a decoupling would not correctly reprod
spatial fluctuations of the local fields established earlier.27

In Sec. II A we introduce mesoscopic and macrosco
fields, and obtain general integral expressions for linear
nonlinear optical responses. In Sec. II B we start from fu
damental equations to derive the dipolar spectral represe
tion for the required susceptibilities. In Sec. II C we obta
expressions for a hypersusceptibilityxc

(3) of a composite in a
mean-field approximation. In Sec. II D, in a mean-field a
proximation, we find a general third-order hypersusceptib
ity for a composite characterized by two parametersAc and
Bc . We compare the results obtained with an earlier stud20

In Sec. III we present results of a detailed numerical inv
tigation.

II. MESOSCOPIC THEORY OF SUSCEPTIBILITIES
OF COMPOSITES

A. Integral formulas for optical responses

In this section we very briefly summarize general re
tions that we need to find optical susceptibilites. We int
duce the mesoscopic fielde5e(r ) and inductiond5d(r ) that
are functions of a coordinater inside a composite. The cor
responding macroscopic~completely averaged! quantities are
denoted asE andD,

E5
1

VEV
e~r !d3r , D5

1

VEV
d~r !d3r , ~1!

where V is the volume of the composite. We consider t
third-order optical nonlinearity that for an isotropic mediu
is defined by the following material relation between t
field and induction,

d5«~r !e~r !14pFA~r !ue~r !u2e~r !1
B~r !

2
e2~r !e* ~r !G ,

D5«cE14pFAcuEu2E1
Bc

2
E2E* G , ~2!

where«, A, andB are functions of the coordinates that a
quire the values« i ,Ai ,Bi and «h ,Ah ,Bh in the inclusion
particles and host, correspondingly, and«c , Ac, andBc are
similar macroscopic quantities for the composite~coordinate
independent!. We also emphasize that we consider optic
~oscillating in time! electric fields. The notationse, d, E, D,
etc. are used for time-independentamplitudesof these fields.

We impose a boundary condition on the mesoscopic e
trostatic potentialw(r ) at the surfaceS of the composite,
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PRB 60 17 073LINEAR AND NONLINEAR OPTICAL . . .
w~r !5f~r !urPS , ~3!

wheref(r ) is the macroscopic potential. Everywhere in th
paper, except for Sec. II D, we consider a linearly polariz
~say, along thez direction! macroscopic fieldE, so f(r )5
2Ez. This corresponds to the quasistatic approximati
whereE is a constant in space~but, of course, oscillates with
the optical frequency in time!. This approximation is valid if
the size of the composite under consideration is m
smaller than the wavelength of light.

Following Refs. 12, 23, and 24, by transforming from
bulk to surface integral over the boundary and back, one
easily derive an exact expression

D5
1

VEEV
d~r !e~r !d3r . ~4!

In what follows, we will find solutions for potentials an
fields as expansions over the optical nonlinearity,

w5w (1)1w (3)1•••, e5e(1)1e(3)1•••, ~5!

where the index shows the order in the electric field am
tude. Correspondingly, the boundary condition~3! yields

w (1)~r !5f~r !urPS , w (3)~r !50urPS . ~6!

From this relation, using a~generalized! Gauss theorem, we
derive that there is no third-order correction to the mac
scopic fieldE,

E(3)[
1

VEV
e(3)~r !d3r 50, ~7!

and, correspondingly,E(1)5E. Similarly, one can show tha
there are no corrections toE in any order, so that the ‘‘ex-
ternal’’ field E is actually the exact macroscopic field. This
consistent with the boundary condition of Eq.~3! that sets
the potentialf as the exact macroscopic potential.

Substituting Eq.~5! into Eq. ~4! and using Eq.~6!, we
obtain, in first order, an expression for the dielectric funct
«c of the composite,

«c5
1

VE2E
V
«~r !@e(1)~r !#2 d3r . ~8!

Alternatively, the dielectric function of the composite can
found directly from the macroscopic~averaged! first-order
induction as

«c5
1

VEEV
«~r !ez

(1)~r !d3r . ~9!

Equation~9! is actually very convenient to express«c in a
form suitable for numerical computations. To do so, we
troduce the dipole moment on anath inclusion particle:

da52
1

4pEVa

1

s~r !
e(1)~r !d3r , s~r ![

«h

«h2« i~r !
.

~10!

This dipole momentda is related to the polarizability tenso
a (a) of an ath inclusion in the composite28:
d

,

h

n

i-

-

-

dab5abg
(a)Eg . ~11!

Here and below, the Greek indices in subscripts denote C
tesian components,b,g,•••5x,y,z. Substituting the defini-
tions of Eqs.~10! and ~11! into Eq. ~9!, we arrive at the
required expression for the dielectric function of the comp
ite,

«c5«hS 114p
N

V
a D , a5

1

3N (
a51

N

abb
(a) , ~12!

wherea is the average polarizability of the inclusions,V is
the volume of the composite, andN is the number of inclu-
sions in the composite. Isotropicity, or the random orien
tion of the inclusions, is assumed to average over Carte
indices. Here and below, the summation over recurring v
tor indices is implied.

Similarly, substituting the expansion of Eq.~5! into Eq.
~4!, using the generalized Gauss theorem to transform
surface integral and back to the volume integral, and us
the boundary conditions@Eq. ~6!#, for the third-order nonlin-
ear terms, one obtains the known expression12,23,24 for the
hypersusceptibility of the compositexc

(3)[Ac1 1
2 Bc ,

xc
(3)5

1

VuEu2E2E
V
x (3)~r !ue(1)~r !u2@e(1)~r !#2 d3r , ~13!

where x (3)(r )5A(r )1 1
2 B(r ) is the coordinate-dependen

third-order susceptibility of the composite matter. A princ
pal advantage of this expression is that the unknown th
order fielde(3) vanishes from Eq.~13! as a result of applica-
tion of the boundary conditions. Only the linear~first-order!
field e(1) needs to be known to find the nonlinear suscep
bility of the compositexc

(3). Equation~13! is actually used in
our numeric computations.

Using Eq.~7! we can find the coefficientsAc and Bc of
the composite nonlinear susceptibility through the averag
the mesoscopic nonlinear polarization:

D(3)[4pFAcuEu2E1
Bc

2
E2E* G

5
1

VEV
d3r H «~r !e(3)~r !14pFA~r !ue(1)~r !u2e(1)~r !

1
B~r !

2
e(1)2~r !e(1)* ~r !G J . ~14!

A drawback of this equation comparing to Eq.~13! is that the
unknown third-order correction to the fielde(3)(r ) must be
found. Its advantage is that it allows one to find both t
coefficientsAc andBc for the composite, not only their com
binationxc

(3)[Ac1 1
2 Bc as in Eq.~13!. We will use Eq.~14!

in Sec. II D to findAc andBc in a mean-field approximation

B. Dipolar spectral theory and susceptibilities of composites

In this section we briefly derive and summarize formu
of the dipolar spectral theory that constitute a basis for
numerical computations. To insure that all definitions a
consistent with the expressions used in the numerical c
putations, we start with the potential-theory equations in



d

rm

ic

cl
io

m

l
e

s

o

nt

in
ce

,

trix
f
and
ory

s

e
ole

s,

e
l
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form of Ref. 12 and then derive needed formulas in the
polar spectral representation.18

The integral equation for the electric potential in the fo
of Ref. 12 is

w~r !5f~r !1E
V

1

s~r 8!
h~r 8!

]G~r ,r 8!

]r g8

]w~r 8!

]r g8
d3r 8,

~15!

whereh(r ) equals 1 whenr is inside any inclusion, and is
zero otherwise, andG(r ,r 8) is the Green’s function for the
Laplace operator and the boundary problem~3! under con-
sideration. In particular,G(r ,r 8)ur PS50, that insures the
compliance of Eq.~15! with boundary condition~3!.

Equation ~15! can be rewritten in terms of the electr
fields and a sum over inclusion particles,

eb~r !5Eb1
1

4p (
b
E

Vb

1

s~r 8!
Wbg~r ,r 8!eg~r 8!d3r 8,

~16!

where we have introduced the dipole-interaction tensorW:

Wbg~r ,r 8!524p
]

]r b

]

]r g8
G~r ,r 8!. ~17!

For a composite large enough~the size of the composite
greatly exceeding the typical separation between the in
sions!, we can replace the Green’s function by its express
for an infinite medium and obtain

Wbg~r ,r 8!5H ~r2r 8!2dbg23~r2r 8!b~r2r 8!g

ur2r 8u5
, rÞr 8

0, r5r 8.
~18!

Let us setrPVa ~whereVa is the volume of ani th inclu-
sion! in Eq. ~16!. Assuming that the inclusions are far fro
each other relative to their sizes, on the right-hand side
Eq. ~16! for bÞa, we can replaceWbg(r ,r 8) by Wbg(r ,rb),
where rb is the position of the center of thebth inclusion,
and, taking into account a definition of Eq.~10!, we obtain

eb~r !2
1

4pEVa

1

s~r 8!
Wbg~r ,r 8!eg~r 8!d3r 8

5Eb2 (
bÞa

Wbg~r ,rb!dbg . ~19!

The right-hand side of Eq.~19! has the meaning of a loca
field acting on theath inclusion, and its left-hand side can b
expressed in terms of the polarizabilitya0 of an isolated
inclusion. For simplicity, we will assume that all inclusion
are identical in shape~spheres! and composition. This will
transform Eq.~19! into the familiar form of the dipole-dipole
interaction equation,

Zdab5Eb2 (
b51

N

Wbg~ra ,rb!dbg , ~20!
i-

u-
n

of

whereZ5a0
21, andN is the number of inclusions. We als

introduce the spectral variableX and dissipation parameterd
as18

X52ReZ, d52Im Z, ~21!

which will be used below to obtain a material-independe
description. For a uniform dielectric sphere of radiusR0 as
an inclusion, for instance, we have

a05R0
3~« i2«h!/~« i12«h!. ~22!

We will follow the dipolar spectral theory developed
Refs. 18 and 29. For this purpose, we introdu
3N-dimensional vectorsud),uE), . . . , with the components
(abud)5dab , (abuE)5Eb ~and similarly for other vec-
tors! and obtain a single equation in a 3N-dimensional space

~Z1W!ud)5uE), ~23!

where the dipole-interaction operator is defined by its ma
elements as (ibuWu j g)5Wbg(r i ,r j ). The main advantage o
the spectral theory is the separation of the geometrical
material properties of a system. The latter enter the the
only through the parameterZ, while geometry is taken into
account by the eigenvectors of Eq.~23!.

The solution of Eq.~20! is determined by the eigenvalue
wn and eigenvectors~eigenmodes! un) of the W operator,18

~W2wn!un)50, ~24!

where n51, . . . ,3N is the eigenmode’s number. Thes
eigenmodes are the surface plasmons in the wh
composite.18

The solution of Eq.~23! is given by Eq.~11!, where the
polarizabilitya (a) of anath inclusion in the composite in the
form of the spectral expansion18 is

abg
(a)5(

b
S abU 1

Z1WUbg D5(
n,b

~abun!~bgun!~Z1wn!21.

~25!

The dielectric function of the composite@Eq. ~12!# can be
written in the spectral representation in Bergman’s form12

«5«hS 12E g~u!

s2u
duD , ~26!

where Bergman’s spectral variables5«h /(«h2«c) can be
related to our variableZ as

s5
1

3
~12R0

3Z!. ~27!

We note that the spectral function satisfies exact sum rule12

E
0

1

ḡ~s!ds51, s̄[E
0

1

ḡ~s!s ds5
1

3
~12 f !, ~28!

whereḡ(s)[(1/f )g(s) is the normalized spectral function,f
is the fill factor, i.e., the fraction of the composite’s volum
occupied by inclusions, ands̄ is the centroid of the spectra
function. In the dipolar spectral theory,18
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ḡ~X!5 lim
d→0

1

3p
Im(

a
abb

(a)~Z!. ~29!

This dipolar spectral function satisfies the sum rules18 that in
terms of the variables have the forms

E
0

1

ḡ~s!ds51, s̄[E
0

1

ḡ~s!sds5
1

3
. ~30!

Comparison of Eqs.~28! and ~30! confirms that the dipolar
theory is the first nonvanishing approximation in the para
eter f !1, as one would expect. Consequently, the redshif
the centroids̄ of the spectral function with an increase off is
absent in the dipolar theory. Because of these inherent l
tations of the dipolar theory, we limit ourselves to consid
ing only small values of the fill factor (f <0.12). Our results
will then contain a relative error on the order of 10%, whi
is acceptable for the objectives of this paper. We comp
our results for thelinear responses with multipolar calcula
tions of Ref. 19 in Sec. III B. This comparison confirms th
for f &0.1 there is a reasonably good qualitative agreem
in particular, the spectral broadening of the spectral funct
ḡ(s) present in the dipolar theory is much greater than
shift of its centroid. This allows us to proceed with the ma
goal of this paper: consideration of thenonlinear suscepti-
bilities, with confidence.

Let us now find the nonlinear optical responses of
composite. In the general case, both the inclusions and
are optically nonlinear. In this case, as follows from Eq.~13!,
the hypersusceptibility of the composite is the sum of hyp
susceptibilities for both inclusions and the host in the co
posite. Therefore, we can consider those contributions s
rately.

In the case of nonlinear inclusions and an optically line
host ~‘‘internal nonlinearity’’!, assuming that these inclu
sions are uniform spheres of radiusR0, we find the linear
~first-order! internal fieldea

(1) in an ath inclusion as

eab
(1)5qabg

(a)Eg , q[
1

R0
3

3«h

« i2«h
. ~31!

Substituting this into Eq.~13! and assuming a linear~say,z)
polarization of the macroscopic fieldE, we arrive at a closed
expression for the enhancement coefficientgi

(3) for the com-
posite in the case of nonlinear inclusions:

gi
(3)[

xc
(3)

x i
(3)

5 f uqu2q2^uabz
(a)u2~agz

(a)!2&. ~32!

Here the fill factor of the composite,f 5Vi /V5(V2Vh)/V,
whereVi is the combined volume of all inclusion particle
and Vh is the total volume of the host not occupied by t
inclusions. Here and below the angular brackets denote
tistical averaging over random positions of the inclusions
the composite, and also over any other random variable
the system. In accord with the notations throughout in t
paper, a subscriptc denotes macroscopic quantities for t
composite.

Now we consider the case of a nonlinear host, while
inclusions are considered as optically linear~‘‘external non-
linearity’’ !. In this case one cannot arrive at a closed expr
-
f

i-
-

re

t
t,
n
e

e
st

r-
-
a-

r

ta-
n
in
s

e

s-

sion of the type of Eq.~32! for the hypersusceptibilityxc
(3) of

the composite. Instead, we will computexc
(3) numerically. A

quantity needed for this computation is the mesoscopic lin
field e(1)(r ) in the host. From Eq.~19!, this field can be
written in the form

eb
(1)~r !5Eb2 (

b51

N

Wbg~r ,rb!dbg . ~33!

Finally, we will find the hypersusceptibility by numerica
integration over a regionVh occupied by the host~outside of
the inclusions!, cf. Eq. ~13!,

gh
(3)[

xc
(3)

xh
(3)

5
12 f

VhuEu2E2E
Vh

ue(1)~r !u2@e(1)~r !#2 d3r ,

~34!

C. Composite’s dielectric function«c and hypersusceptibility
xc
„3… in mean-field approximation

To introduce the mean-field approximation, we use
coated sphere model. Here a spherical inclusion of radiusR0
consisting of a material with dielectric function« i is sur-
rounded by a spherical shell of the host with dielectric fun
tion «h . The external radius of this shell is set to beR, where
R is the mean radius of a volume containing one inclusi
By this definition, the fill factorf 5(R0 /R)3. The rest of the
system, i.e., the region atr .R, is set to be the averag
composite medium with the dielectric function«c of the
composite. The electric field in this composite medium
equal to the mean~macroscopic! uniform field E that deter-
mines the boundary condition at the host-composite in
face. The boundary conditions at the two interfaces of
model ~at r 5R0 and r 5R) are the known electrostati
conditions30 of continuity of the potentialw(r ) and of the
normal component of induction,rd(r ).

Solving the electrostatic equations30 in the linear approxi-
mation with the corresponding boundary conditions, we e
ily obtain the field in the inclusion,ei

(1)(r ) for r<R0, and in
the host,eh

(1)(r ) for R>r .R0:

ei
(1)5

3«h

« i12«h
El , El[

«c12«h

3«h
E,

eh
(1)~r !5El1a0

3~rE l !r2r 2El

r 5
. ~35!

Here we have introduced the effective local~Lorentz! field
El , and the polarizabilitya0 of an inclusion is given by Eq.
~22!. A self-consistency condition of Eq.~9!, or, alterna-
tively, the boundary conditions at the two interfaces of t
problem, along with the solution of Eq.~35!, yield the known
Maxwell Garnett formula for the dielectric function of th
composite, which we write in explicit form as

«c5
112 f b

12 f b
, b[

a0

R0
3 5

« i2«h

« i12«h
. ~36!

For the mean-field model under consideration, a gen
formula ~13! for the case of nonlinearity in the inclusion
reduces to
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xc
(3)5

3x I
(3)

4pR3E0

R0Ue(1)~r !

E U2S e(1)~r !

E D 2

d3r . ~37!

Substitution of the first of Eqs.~35! into Eq. ~37! yields a
known expression20 for the hypersusceptibility of a compos
ite in the mean-field approximation for the case of nonline
ity in the inclusions:

gi
(3)[

xc
(3)

x i
(3)

5 fU«c12«h

« i12«h
U2S «c12«h

« i12«h
D 2

. ~38!

For the case of nonlinearity in the host, from Eq.~13! we
obtain, for our model,

xc
(3)5

3xh
(3)

4pR3ER0

RUe(1)~r !

E U2S e(1)~r !

E D 2

d3r . ~39!

Substituting the second of Eqs.~35! and performing some
elementary but tedious integrations, we obtain, for the me
field hypersusceptibility of the composite for the case of
nonlinear host,

gh
(3)[

xc
(3)

xh
(3)

5
1

5
p2upu2~12 f !@8 f ~11 f 1 f 2!ubu2b2

16 f ~11 f !ubu2b12 f ~11 f !b3

118f ~ ubu21b2!15#, ~40!

where

p5
«c12«h

3«h
. ~41!

Our equation~40! is somewhat different from the corre
sponding result of Sipe and Boyd@see Eq.~6.23! in Ref. 20#
that can be written in the form

gh
(3)[

xc
(3)

xh
(3)

5
1

5
upu2p2@8 f ubu2b216 f ubu2b12 f b3

118f ~ ubu21b2!15~12 f !#. ~42!

As one can conclude from comparison of Eqs.~40! and~42!,
the latter takes into account only the lowest power of the
factor f. As a result of this, in particular, the expression
Eq. ~42! does not tend to zero when the host vanishes,
for f→1, which should hold for the case of optical nonli
earity in the host. At the same time, our equation~40! does
clearly possess this property. We note, however, that
difference is less significant than it might seem to be,
cause one does not actually expect that either of the form
in the limit of f→1 may be applicable to real systems.

D. Composite’s hypersusceptibility parametersAc and Bc

in mean field approximation

In this section, in the framework of the mean-field a
proximation, we will find the coefficientsAc and Bc that
completely characterize the hypersusceptibility of an iso
pic composite for the case of external nonlinearity~i.e., non-
linear host and linear inclusions!. These coefficients shoul
-

n-
e

ll
f
.,

is
-
as

-

-

be found in terms of the known coefficientsAh and Bh for
the host. Though we will not use the composite coefficie
Ac andBc in the present numerical computations to comp
them with results of the spectral theory, these coefficients
themselves are of interest because they provide a comp
description of the third-order susceptibility of an isotrop
composite. We will compare our result to the previous the
of Ref. 20, and show that they differ in terms proportional
higher powers of the filling factorf. Note that our result for
the case of nonlinearity in inclusions~internal nonlinearity!
does not differ from that of Ref. 20.

An electrostatic equation for the third-order field
]d(3)(r )/]r50. From this, taking Eqs.~2! and ~5! into ac-
count, we obtain equations for the inclusion region,r<R0,

Dw (3)~r !50, ~43!

and for the host region,R>r>R0,

Dw (3)~r !5
4p

«h
FAhe(1)~r !

]

]r
ue(1)~r !u2

1
Bh

2
e(1)* ~r !

]

]r
@e(1)~r !#2G , ~44!

wheree(1)(r ) is given by Eq.~35!.
To find both the unknown hypersusceptibility coefficien

Ac and Bc , we need to include at least two components
the macroscopic field, i.e., setE5exEx1ezEz . We seek the
solution of Eqs.~43! and~44! as a spherical harmonic expan
sion

w (3)~r !5(
lm
A 4p

2l 11
Rlm~r !YlmS r

r D , ~45!

where the summation overl is extended overl 51 and 3.
Substituting fields~35! into Eq. ~44! and expanding over

spherical harmonics, we obtain an equation forR10, the only
of the radial functionsRlm that we need to know,

1

r

d2@rR10~r !#

dr2
2

2R10~r !

r 2
5218QFg1bubu2R0

9

r 10
1

g2R0
6

5r 7 G ,

~46!

where the notations are

Q5
4p

«h
pupu2,

g15Ez~ uExu21uEzu2!S 3

2
Ah1

1

2
BhD

1Ez* ~Ex
21Ez

2!S 1

2
Ah1

1

2
BhD , ~47!
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g25Ez~ uExu21uEzu2!FAhS 4ubu21
1

2
b2D

1
1

2
Bh~b216ubu2!G

1Ez* ~Ex
21Ez

2!FAhS 2ubu21
3

2
b2D

2
1

2
Bh~2ubu223b2!G .

The solution of Eq.~46! has the form

R10~r !52
1

3
g1Qbubu2R0

9 1

r 8 2
1

5
g2QR0

6 1

r 5 1ar1b
1

r 2 ,

~48!

wherea andb are two coefficients of the general solution
the homogeneous equation that should be found from
boundary conditions.

Application of those conditions atr 5R results in the ex-
pressions

a52
2

3
g1Q f3bubu22

1

5
g2Q f21

1

3
h,

~49!

b5R3S g1Q f3bubu21
2

5
g2Q f22

1

3
hD ,

where the constanth is defined as

h52
4p

«h
H FAc2Ah~11S!S 11

2

5
~2 ReS1uSu2! D

2
1

5
Bh~11S* !~2S1S2!GEz~ uExu21uEzu2!

1F1

2
Bc2

1

5
Ah~11S!~2 ReS1uSu2!

2
1

2
Bh~11S* !S 11

1

5
~2S1S2! D GEz* ~Ex

21Ez
2!J ,

~50!

andS[(«c2«h)/«h .
The solution inside the inclusion~i.e., for r<R0) obvi-

ously has the form

w (3)~r !5(
lm
A 4p

2l 11
Rlm~R0!S r

R0
D l

YlmS r

r D . ~51!

To obtain this equation, we have used the boundary co
tion of potential continuity.

Applying the continuity condition for the normal compo
nent of inductiond(3)(r ) for an interface atr 5R0 to Eqs.
~45! and ~51!, we finally obtain the required expressions f
Ac andBc in terms ofAh andBh :
e

i-

Ac5p2upu2~12 f !H AhF11
7

5
f ~11 f 1 f 2!b2ubu2

1
1

10
f ~11 f !b31

3

10
f ~11 f !bubu21

12

5
f ~b21ubu2!G

1
1

2
BhF2

5
f ~11 f 1 f 2!b2ubu21

3

5
f ~11 f !b3

1
9

5
f ~11 f !bubu21

12

5
f ~b21ubu2!G J , ~52!

Bc5p2upu2~12 f !H BhF11
6

5
f ~11 f 1 f 2!b2ubu2

2
1

5
f ~11 f !b32

3

5
f ~11 f !bubu21

6

5
f ~b21ubu2!G

1AhF2

5
f ~11 f 1 f 2!b2ubu21

3

5
f ~11 f !b3

1
9

5
f ~11 f !bubu21

12

5
f ~b21ubu2!G J . ~53!

One can easily verify that the sumAc1Bc/2 as given by Eqs.
~52! and ~53! does indeed reproduce the result of Eq.~40!
obtained by an independent approach. Similar to Eq.~40!,
these values ofAc and Bc are not in a complete agreeme
with the corresponding result of Ref. 20: only terms conta
ing the lowest powers off agree@see Eq.~6.23! in Ref. 20#.
Finally, we note that exactly the same result as in Eqs.~52!
and ~53! can be obtained by using the integral relation~14!
instead of the boundary condition ford.

III. NUMERICAL RESULTS

A. Numerical procedures

We have performed numerical computations of linear a
nonlinear susceptibilities of Maxwell Garnett composite
The computations are based on the spectral theory as g
by Eqs.~12!, ~25!, ~32!, and~34!. A considerable advantag
of the spectral theory18 is that the geometry of the composi
and dielectric properties of its constituents are separated
particular, the eigenvalue problem of Eqs.~18! and ~24! de-
pends only ongeometryof the composite, while the spectra
expansions for fields and polarizabilities depend ondielectric
propertiesof the inclusions and host. This is a common a
vantage of spectral theories that is inherent in the gen
spectral theory.12

We have solved the eigenproblem~24! by known Lanczos
algorithms31 for large-scale diagonalization, and stored t
eigenvectors and eigenvalues obtained. Once stored, t
data have been used to compute spectral contours of c
posite’s dielectric function and hypersusceptibility.

We have generated a composite by randomly plac
spheres at sites of a cubic lattice. The radiusR0 of a sphere
is arbitrarily set to equal 1. A specific value ofR0 only
determines a reference scale for the spectral parameterX and
the dissipation parameterd of the theory@see Eqs.~21! and
~22!#. We place fromN575 to 1500 spheres into the un
cell to achieve a fill factor fromf 50.001 to 0.12. To de-
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scribe an infinite composite, we impose periodic conditio
at the boundary of the unit cell. This is equivalent to repla
ing the dipole tensorWbg(r1 ,r2) in the formulas of Sec. II B
by a periodic tensorVbg(r1 ,r2) defined as

Vbg~r1 ,r2!5(
L

Wbg~r1 ,r22L !, ~54!

where the sum is extended over all lattice vectorsL . The
above-mentioned formulas~12!, ~25!, ~32!, and~34! are still
applicable if one understands that the summation over in
sions, (b . . . , is performed within the unit cell,N is the
number of inclusions in that cell,V is its volume, andVh is
the volume occupied by the host in the unit cell.

Obviously, one cannot numerically compute the infin
sum in Eq.~54!. In reality, this sum can be computed b
either the known Ewald method~see, e.g., Ref. 32!, or by
simply truncating it at a large but finite number of repea
cells. We have employed the last approach. The unit ce
chosen as a cube, the lattice is cubic, and the truncated c
posite is a large cube. This procedure preserves the sym
try of the unit cell. The number of terms in the sum in E
~54! taken into account is from 133 to 253. We have carefully
checked that this number of repeated cells is sufficien
achieve a targeted numerical precision~see Fig. 9 and the
corresponding discussion in Sec. III D!. From 150 to 1000
realizations of a random-composite unit cell have been g
erated by the Monte Carlo method, depending on the num
of inclusionsN used to achieve required statistical accura

Numerical results to be discussed below are calculate
both the spectral form that is invariant with respect to
material composition of a composite and for a specific co
position. That is, the specific computations are made for
ver nanospheres in a hypothetical host whose dielectric c
stant is realistically chosen as«h52.0. The optical constant
of silver are taken from Ref. 33.

B. Dielectric function

The maximum information about linear susceptibility
contained in the spectral functiong(s); see Eq.~26!. We
show results of our computations of the normalized spec
function ḡ(s)[(1/f )g(s) in Fig. 1. As we see, the spectra
function at small values off is a narrow peak that broaden
asf increases. The centroid of the peak stays at its positio
s̄5 1

3 in accord with Eq.~30!. In the corresponding results o
Hinsen and Felderhof~see Fig. 4 in Ref. 19!, the behavior is
qualitatively similar except for a small shift of the centroids̄.
Quantitatively, let us compare our results at the highest

FIG. 1. Normalized spectral function (1/f )g(s) for the values of
the fill factor shown in the figure. The calculations are done forN
5500 inclusion spheres per unit cell.
s
-

u-

d
is
m-
e-

.

o

n-
er
.
in
e
-
l-
n-

al

of

ll

factor f 50.12 that we use~as the most difficult case for us!.
The height~maximum value! of our spectral function~Fig. 1!
for f 50.12 is'8, while that of Ref. 19 is'9 for f 50.1.
The red-wing edge of our spectral function is ats50.15, and
the same value one finds in Fig. 4 of Ref. 19 forf 50.1. The
shift of the peak ofg(s) in Ref. 19 for f 50.1 is'0.015, an
order of magnitude smaller than its half-width, as expect
This explains a reasonably good agreement~within ;10 per-
cent! of the dipolar results of the present paper with mu
polar results of Ref. 19 for the range of values 0.01< f
<0.12 considered by us.

A quantitative distinction ofg(s) of Ref. 19 from Fig. 1 is
somewhat larger amplitude of the oscillations seen in
spectral wings of both the results. These oscillations or
nate from interaction of the nearest neighbors and, theref
should be different in the two theories because of the diff
ent small-scale order. In fact, our model is the lattice g
~randomly occupied sites on a regular lattice!, while that of
Ref. 19 is a hard-sphere gas with randomly positioned n
overlapping spheres. We point out that the exact shape o
spectral function~amplitude of the oscillations, in particular!
is not very important, because the actual susceptibility
obtained@cf. Eq. ~26!# by the integration along a line shifte
from the real axis due to dissipation (Ims), which brings
about smoothing of the spectral contour. Note that our cho
of the random lattice-gas model is dictated by our intent
exclude closely packed neighbors, where the dipolar
proximation might have failed.

Though the spectral function shown in Fig. 1 is sufficie
to calculate the linear susceptibility of a composite with t
given geometry and an arbitrary material composition, it
also useful to discuss trends susceptibilities and their rela
to a mean-field theory as function of the fill factorf for a
specific composite. As such, we chose a composite of si
spheres in a purely refracting~no dissipation! host of «h
52.0. We have chosen silver impurities because of the v
low dissipation in silver in the red part of the visible spe
trum. This leads to a number of resonant enhancement
nomena including giant enhancement of Raman scatte
~see, e.g., the theory and comparison with experiment in R
34!.

In Fig. 2 we show the real and imaginary parts of t
relative dielectric function of a compositee[«c /«h for the
fill factor in the range 0.001< f <0.12 as functions of the
light frequencyv ~indicated as photon energy!. Both the
results of the present theory@see Eqs.~12! and ~25!# and a
mean field theory@Maxwell Garnett formula; see Eq.~36!#
are plotted. As one can see, for small fill factors (0.001< f
<0.01), there is a good overall agreement between
present computations and Maxwell Garnett~mean-field!
theory. With an increase off to 0.04, this agreement deterio
rates, especially for Ime. While our computations, in agree
ment with Ref. 19, show a pronounced widening of the sp
tral profile, the Maxwell Garnett formula predicts a narro
peak moving very slightly toward the red wing.@We note
that the Maxwell Garnett formula satisfies the exact sum r
~28! and, consequently, possesses the peak of absorptio
the correct central frequency.# The same trend is even mor
pronounced for the highest fill factor of our computation
f 50.12.
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Interestingly enough, for the real part of the susceptibil
the overall agreement with Maxwell Garnett formula is n
bad even forf 50.12, except for the very central region
the absorption band. In that region, the Maxwell Garnett f
mula possesses a pole singularity. In contrast, in the pre
theory, there are multiple poles@every eigenvalue generates

FIG. 2. Real~left column! and imaginary~right column! parts of
the relative dielectric function of the composite,e5«c /«h , for the
fill factors f shown in the graphs. The computations are done
N5500 inclusion spheres of silver in the unit cell. The solid lin
denote the result of the present theory as given by Eqs.~12! and
~25!. The dashed line is a plot of the Maxwell Garnett formula f
a composite with the samef and dielectric properties. The plots a
given as functions of the photon energy~eV! for solid silver nano-
spheres as inclusions in a uniform host with«h52.0.
,
t

-
nt

weak pole; see Eq.~25!#. In the thermodynamic limit~the
size of the system tends to infinity at a given fill facto!,
these poles overlap. This, most likely, leads to a weaker
gularity, such as a branch cut. For this reason, the pre
theory does not predict«c to be as large in the resonan
region as for the mean-field theory.

A singularity in the dielectric function~polarizability per
inclusion in the composite! is of principal interest because it
high values may lead to a dielectric instability. A simila
effect is the formation of a gap in the density of states
doped semiconductors.35 In our case, the condition of dielec
tric stability is that the maximum eigenvalueuwnu does not
exceed the maximum possible~at any frequency! magnitude
of the spectral variableuXu, or

maxuwnu<max
1

R0
3URe

« i12«h

« i2«h
U. ~55!

Note that the spectrumwn depends only on the geometry o
the composite, and does not depend onR0 , « i , or «h . Ob-
viously, the stability condition~55! can always be satisfied i
the inclusions are small enough (R0→0).

Any mean-field theory, the Maxwell Garnett theory
particular, requires that the mean field is much greater t
the difference of the local fields at different inclusions.
other words, all inclusion should be equivalent, andspatial
fluctuations of the local field measured at a given dista
from any of the inclusions should be small compared to
fields themselves. Previously, we have shown that forfractal
clusters the situation is completely opposite: the long-ra
nature of the dipole-dipole interaction causes giant spa
fluctuations of the local fields.27 Undoubtedly, a similar situ-
ation should take place for fractal composites~i.e., compos-
ites with a fractal cluster in a host medium as the unit ce!.
A question is whether there are significant spatial fluct
tions of local fields for a nonfractal Maxwell Garnett com
posite. The above-discussed results for the dielectric func
suggest that those fluctuations should be large in the reso
~absorption! region.

To answer this question directly, we show in Fig. 3 t
relative intensity of the local fields at different inclusion
~more specifically, square of the local polarizability is th
quantity plotted!. One can see that indeed in the reson
region there are very strong~by orders of magnitude!
changes of the local fields from one inclusion to anoth

r

ay: A
o
rizability
gion
FIG. 3. Spatial distribution of the intensity of induced dipoles at different inclusions. This distribution is plotted in the following w
composite is generated and local dipole polarizabilitiesabg

(a) are found for each inclusion from Eq.~25!. Then inclusions are projected ont
thexy plane. If there are several inclusions projected onto the same site, one of them is randomly left. The square of the local pola
1
3 uabz

(a)u2 for each of the inclusions left is plotted as the vertical coordinate. The left panel shows the distribution for the resonant re~in
terms of the spectral parameterR0

3X520.01), while the right one is for the off-resonant region~spectral wingR0
3X521.0).
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which we refer to as spatial fluctuations. In contrast, for
off-resonant region~see the right panel in Fig. 3!, such fluc-
tuations are much less pronounced. This explains why
Maxwell Garnett theory works in the spectral wings but fa
in the central~resonant! region. One may expect that th
effect of the spatial fluctuations onnonlinearsusceptibilities
will be much more significant. We show below that it inde
is the case.

Previously we have predicted giant fluctuations of lo
fields in fractal clusters and composites.27 However, there is
a major distinction between fractal and nonfractal comp
ites: as we have shown above, the spatial fluctuations f
nonfractal Maxwell Garnett composite are strongest in
resonant region (uXu!1), while for fractal composites the
are most pronounced in a far-wing, off-resonant reg
(uXu*1). This difference notwithstanding, the fluctuatin
singular spatial distributions in Fig. 3 are similar to spat
distributions obtained earlier for inhomogeneously localiz
excitations in fractal clusters.36–38

In numerical computations with periodic boundary con
tions there is always a question whether the size of the
cell is sufficient. To answer this question, in Fig. 4 w
present a plot of the dielectric function for a composite w
the fill factor f 50.12 computed with different numbers o
inclusions in the unit cell. As we see, the dependence oN
levels off betweenN5500 and 1500, the two values used
the present calculations. The conclusion is that the size o
unit cell used is sufficient.

C. Hypersusceptibilities for composite with nonlinearity
in inclusions

Now we consider the nonlinear~hyper!susceptibilityx (3)

in the case of a composite consisting of nonlinear inclusi
embedded in an optically linear host. We performed com
tations for such composites withN5500 inclusions in the
unit cell. Figure 5 presents the absolute values of the
hancement factorg(3)[x (3)/x i

(3) calculated from the spectra
theory @Eq. ~32!# and from the mean-field theory@Eq. ~38!#
for fill factors in the range 0.001< f <0.12. For the very
diluted composites (f 50.001,0.01), the spectral profile o
ug(3)u consists of two peaks. The one at the absorption
quency~the right one of the two! is in reasonable agreeme
with the mean-field formula. However, there is also anot
considerable peak, redshifted from the absorption freque
This peak has no counterpart in the mean-field curve. T
shifted peak is due to the interaction between inclusio

FIG. 4. Real~left panel! and imaginary~right panel! parts of the
dielectric function«c of the composite for the fill factorf 50.12 and
the indicated numberN of inclusion spheres in the unit cell. Th
curves are shown as functions of the photon energy.
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which causes spatial fluctuations of the local fields and r
ders the mean-field approximation inapplicable. With an
crease off to the values of 0.04 and 0.12, the mean-fie
approximation fails completely, even on the order of mag
tude, except for the very far wings of the spectral conto
The mean-field theory greatly overestimatesg(3) in the re-
gion of the surface-plasmon resonance~at '3 eV) and un-
derestimatesg(3) farther away from this resonance. Th
present theory predicts a significant enhancement of the
persusceptibilityx (3), though this enhancement is much le
than predicted26,39 and observed40 for fractal clusters~com-
posites!.

As we emphasized above in Secs. II B and III B, the sp
tral representation of the linear susceptibility has a great
vantage of being material independent. In contrast to the
ear case, the nonlinear susceptibilities directly depend on
dissipation in the medium. Therefore, one cannot direc
generalize the spectral theory to the nonlinear case. Ne
theless, we will show below that the dependence on the
sipation can be parametrized in such a way that it acquire
universal scaling form in the most interesting part of t
spectral region, where the enhancement of the nonlinear
larizability due to the composite structure is large.

The above-mentioned generalization can be implemen
by expressing the enhancement factorg(3) as a function of
the spectral variablesX andd. A plot of ug(3)(X)u for differ-
ent values ofd is presented in Fig. 6~note that the range o
d50.00120.1 is realistic!. As we see, for smalluXu the en-
hancement factor dependence levels off, reaching a m
mum. As the plot in the right panel shows, the depende
on d in the regionuXu&1 is scaling with a trivial index of
22, ug(3)u5Cd22, where C does not depend ond. This
result is the required spectral representation for the nonlin
susceptibility, which depends only on geometry but not
the material composition of a composite. At the same tim
the universal~for a given geometry! dependence on the spe
tral parametersX andd can be easily translated for any sp
cific material into the dependence on light frequency us

FIG. 5. Magnitude of the enhancement coefficientug(3)u
5uxc

(3)/x i
(3)u for nonlinear inclusions of silver in a linear host as

function of the photon energy for the fill factors shown in the fi
ures. The solid curve is for the present spectral theory@Eq. ~32!#,
and the dashed curve is for the mean-field theory@Eq. ~38!#. The
curves are plotted on a logarithmic scale.
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the definition of Eq.~21!. For instance, for silver the spectr
parameters depend on the frequency as shown in Fig. 7

It is interesting to note that forfractal clusters or compos
ites, scaling ind takes place in the opposite limiting case, f
uXu*1, with an index of23. We attribute this distinction to
a different spectral distribution of the density of eigenmod
In a Maxwell Garnett composite, a nonfractal system, eig
modes are more abundant near the surface-plasmon
nance (uXu&1), while in fractal systems a strong pair corr
lations brings about a shift of the eigenmode density tow
larger uXu. This also leads to another principal distinction
a Maxwell Garnett composite from fractal systems. That
the third-order enhancement in fractals actuallyincreases,
not decreases, withuXu, approximately, in a scaling
manner,39

g(3).
uXu3

d3 uX Im au.
uXu31d0

d3
, ~56!

where 1>d0.0 is a nontrivial index, optical spectral dimen
sion.

D. Hypersusceptibilities for composite
with nonlinearity in host

Here we consider a case where the inclusions are optic
linear, and all nonlinearity is in the host. One can expect t
in this case a higher enhancement and lower dielectric lo
can be achieved, because the outer electric field aroun
resonant dielectric sphere is higher than the internal fi
The long range of the dipolar fields brings about strong m

FIG. 6. Spectral representation of the nonlinear enhancem
Magnitude of the enhancement coefficientug(3)u for the fill factor
f 50.12 ~500 inclusions of silver in the unit cell! for a linear host
and nonlinear inclusions as functions of the spectral variableuXu
~the actual region plotted is forX,0, corresponding to visible
light! for different values of the dissipation parameterd ~left panel!.
The right panel shows similar plots whereug(3)u is normalized by
multiplication byd2. Note the double logarithmic scale.

FIG. 7. Dependence of the spectral parameterX ~solid line! and
dissipation parameterd ~dashed line! on light frequency for a silver
nanosphere.
.
-

so-

d

,

lly
t
es
a

d.
-

soscopic fields in a large volume of the host around each
the inclusions. At the same time, optical absorption~dielec-
tric losses! are concentrated in a relatively small volume
the inclusions. Below we test numerically these qualitat
arguments.

The enhancement coefficient for the case under consi
ation g(3)[xc

(3)/xh
(3) in the present theory has been calc

lated in accord with Eq.~34!, where numerical integration is
carried out by the Monte Carlo method with 3000 trials p
one realization of the composite at each spectral point.
uncertainty of the Monte Carlo integration is much less th
the width of the lines in the corresponding plots~see below!.
The mean field approximation is calculated from Eq.~39!.

The enhancement factors for composites withN5500 in-
clusions in the unit cell for the fill factors 0.001< f <0.12 are
presented in Fig. 8. The behavior of the enhancement fa
in this case is similar to that for the case of nonlinearity
the host~cf. Fig. 5!, though the enhancement is appreciab
higher. Also, in all of the visible to infrared spectral rang
there is optical enhancementug(3)u.1 in contrast to Fig. 5.
The mean-field theory gives a reasonable agreement with
present computations only for the lowest fill factor present
f 50.001. Similar to the case nonlinear inclusions, asf in-
creases, a peak grows to the red region from the sur
plasmon resonance of inclusions dominating the picture
f 50.001. At f >0.04, the mean-field theory fails completel
even on the order of magnitude. This is due to developm
of the giant fluctuations of local fields introduced in Ref. 2

To check numerical consistency, we present in Fig. 9
sults of the computation ofug(3)u for different numbers of
inclusions in the unit cellN ~the left panel! and for different
numbers of repetitions of the unit cell~the right panel!. The
main conclusion that one can draw from this figure is th
both the number of inclusions and the number of cells
sufficient ~the curves shown overlap within their widths fo
most of the spectral region!.

nt:

FIG. 8. Magnitude of the enhancement coefficientug(3)u
5uxc

(3)/x i
(3)u for optically linear inclusions of silver in the nonlinea

host as functions of the photon energy for the fill factors shown
the figures. The solid curve is for the present theory@Eq. ~32!#, and
the dashed curve is for the mean field theory@Eq. ~40!#. The curves
are plotted on a logarithmic scale.
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Finally, we discuss whether for the case of nonlinearity
the host there is a scaling ind similar to that shown in Fig. 6.
In Fig. 10 we show spectral dependence ofug(3)u in terms of
the spectral variableX and dissipation parameterd. We con-
clude that in this case as well, the enhancement factor
uXu&1 scales asug(3)u'Cd22. This provides the spectra
representation for the nonlinear susceptibility, giving
material-independent description of the results.

In recent experiments,22 cancellation of Imx (3) due to
nontrivial consequences of local-field effects has been
served, predicted on the basis of a mean-field theory. In th
experiments, both the host and inclusions are optically no
linear. Correspondingly, our theoretical prediction for th
nonlinear susceptibility would be a sum of the correspondi
contributions found above and in Sec. III C. All the observ
tions of Ref. 22 are in a good agreement with the mean-fi
theory of Ref. 20. The reason for such good an agreemen
that the fill factor in Ref. 22 is very low,f 52.231026. At
such values off, the present theory predicts the mean-fie
theory to be completely applicable~cf. the panels forf
50.001 in Figs. 5 and 8!.

IV. CONCLUSIONS

Let us very briefly summarize the major results obtain
without repeating most of the discussion already giv
above. We have calculated both linear («c) and nonlinear
(xc

(3)) optical susceptibilities of Maxwell Garnett composite
in a dipolar spectral theory. The theory is asymptotica
exact for composites where typical distances between inc
sions are much greater than the sizes of the inclusions. In
range of the fill factors (0.001< f <0.12), our computations
should have an error of 10% or less. For the sake of co
parison, we have also computed these susceptibilities i
mean-field approximation.

Our main goal has been finding nonlinear susceptibiliti

FIG. 9. Magnitude of enhancement coefficientug(3)u for the fill
factor f 50.12 and different unit cell sizesN579, 500, and 1337
~left panel! and different numbers of repetition of the unit cell in th
composite~right panel!. Data are plotted for optically linear inclu-
sions in a nonlinear host. Note the double logarithmic scale.
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of composites. However, for the sake of testing our meth
we have also calculated linear responses. The spectral
tion computed agrees within the expected 10% error with
previous calculations of Ref. 19.

We have suggested a material-independent spectral r
sentation for nonlinear susceptibilities, which is not qu
trivial, because the corresponding spectral function dep
directly on the dissipation, unlike that for the linear susc
tibilites. We have achieved this goal by choosing the spe
variablesX andd, and showing that there is a scaling ind in
the region of optical enhancement.

We conclude that the mean-field approximation does
describe the susceptibilities under consideration in the r
nant region where optical absorption is present. For the
ear dielectric function, the disagreement of the mean-
approximation~Maxwell Garnett theory! is more significan
for the imaginary part, which is understandable, beca
Im «c is nonzero only the region of optical absorption.

We have found that there is a significant~by several or-
ders of magnitude! enhancement of the nonlinear suscepti
ity xc

(3) in the resonant region. For the nonlinear respon
the mean-field theory is applicable only for very low
factors (f &0.001). For larger fill factors, it completely fai
to describe the maximum magnitude~even on the order o
magnitude! of xc

(3) and its spectral contour. The likely cau
of this dramatic behavior is the presence of giant spatial fl
tuations of local fields27 related to the long-range nature
the dipole interaction.
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FIG. 10. Same as in Fig. 6, but for the case of a nonlinear
and linear inclusions.
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