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Concentration of optical energy on the nanoscale
ikin depth ~25 nm
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Neutral gold

Size ~10 nm

Extrinsic (outside the metal) enhancement of local fields is by a

plasmonic quality factor Q= 'IrF:]egm ~10-100
gm
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Lycurgus Cup (4th Century AD): Roman Nanotechnology

—

50nm

I. Freestone, N. Meeks, M.
Sax, and C. Higgitt, The
Lycurgus Cup - a Roman
Nanotechnology, Gold Bull.
40, 270-277 (2007

© Trustees of British Museum

Colors of Silver Nanocrystals and Gold Nanoshapes

SEM images

2 pm
C. Orendorff, T. Sau, and C. Murphy, Shape-

Dependent ..., Small 2, 636-639 (2006)
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Nanoplasmonic colors are very
bright. Scattering and absorption
of light by them are very strong.
This is due to the fact that all of
the millions of electrons move in
unison in plasmonic oscillations
Nanoplasmonic colors are also
eternal: metal nanoparticles are
stable in glass: they do not
bleach and do not blink. Gold is
stable under biological
conditions and is not toxic in
Vivo

W. A. Murray and W. L. Barnes,
Plasmonic Materials, Adv. Mater. 19,
3771-3782 (2007) [Scale bar: 300 nm]
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Classification of Nonlinearities in Nanoplasmonics
1. Extrinsic, Intrinsic, and Combined
In the surrounding dielectric, in the metal itself, and in both.
Intrinsic (Perturbative): Due to nonlinear polarizabilities of the metal itself.
A. Bouhelier et al., Phys. Rev. Lett. 90, 13903 (2003).
J. Renger et al., Phys. Rev. Lett. 103, 266802 (2009).
Extrinsic (Perturbative) : Due to nonlinear polarizabilities of the surrounding medium
D. Pacifici, H. J. Lezec, and H. A. Atwater, Nat. Phot. 1, 402 (2007)
2. Perturbative (weak field) and Nonperturbative (strong field)
Perturbative (due to low-order nonlinear polarizabilities), both extrinsic and intrinsic:
SHG, THG, parametric mixing, Kerr effect, nonlinear absorption, two-photon fluorescence
Nonperturbative (extrinsic): High-harmonic generation, spaser, loss compensation by
gain
S. Kim et al., Nature 453, 757 (2008)
M. I. Stockman, Journal of Optics 12, 024004 (2010)
M. I. Stockman, Phys. Rev. Lett. 106, 156802 (2011)
P. M. Bolger et al., Opt. Lett. 35, 1197 (2010)
Nonperturbative (intrinsic): Plasmon-polariton solitons, metallization of dielectrics
E. Feigenbaum, and M. Orenstein, Opt. Lett. 32, 674 (2007)
M. Durach et al., Phys. Rev. Lett. 105, 086803 (2010)
M. Durach et al., arXiv:1104.1642 (2011)
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Extrinsic Enhancement Factors for Small (in
comparison to skin depth ~25 nm) Nanoparticles

These factors do not depend on the nanoparticle size R (scaling)

-Reg,
Ime,,

~10-100

Plasmonic quality factor: Q=
Radiative rate enhancement factor: ~Q? ~10?-10*
Excitation rate enhancement factor: ~ Q?* ~10° —10*

This Purcell factor is inversely proportional to the nanoparticle volume, which is
fundamentally important for spaser action (feedback rate)

SERS resonant enhancement factor: ~Q* ~10* —10° (additional enhancement is due to

the geometric enhancement (in tight gaps, at sharp tips, etc.)

Enhancement of the emission rate into an SP mode: oc %
. C_RQ e
Same with respect to free photons (Purcell factor): ~ ~10

R3
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Nanoplasmonics is intrinsically ultrafast:

T (fs) Spectrally, surface plasmon
resonances in complex systems
757 B f occupy a very wide frequency
/ ?St area_ ol band; for gold and silver:
i dSMOoNICS
50 P Aa)za)p/\/zz4ev
Including aluminum with
25 plasmon responses in the
ultraviolet, this spectral
; ; : Wy (eV) width increases to ~10
1 2 3 A o
_ _ _ Corresponding rise
Surface plasmon relaxation times are in time of plasmonic
~10-100 fs range responses ~ 100 as

M. I. Stockman, Phys. Rev. Lett. 84, 1011 (2000).
M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 67402 (2002)
D. J. Bergman, and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003)
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\QS’ Perturbative (two-photon) ultrafast intrinsic nonlinearity

GeorgiaStat Localized SP hot spots and SPPs coexist in space and time on nanostructured
Universit syrfaces

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, Femtosecond Imaging
of Surface Plasmon Dynamics in a Nanostructured Silver Film, Nano Lett. 5, 1123

(203(5))6 PEEM Image as a Function of Delay (250 as per frame
nm .

30 femtoseconds from life
of a nanoplasmonic
system

Localized SP hot spots are |
deeply subwavelength as
seen in PEEM
(photoemission electron
MICcroscope)
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Perturbative (second-order in field)

Ultrafast active plasmonics jtrafast intrinsic nonlinearity

Kevin F. MacDonald'*, Zsolt L. Samson', Mark I. Stockman? and Nikolay I. Zheludev'

Control (pump) pulse

Polarization

e

200fs /e

Decoupled signal
AN

Grating

Fused silica

Al film

cross-section

Figure 1 | Ultrafast optical modulation of SPP propagation. A plasmonic

signal, coupled to and from the waveguide by gratings on an

aluminium/silica interface, is modulated by optical pump pulses as it

travels between the gratings.
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Giant SPIDER . Perturbative (second-order in field)
OTOIASAME  (Corrin Cfato ,F,’I‘i}’,i'f’jfi‘”d Astronor ultrafast intrinsic nonlinearity

PRL 103, 186801 (2009) PHYSICAL REVIEW LETTERS 30 OCTOBER 2009

Giant Surface-Plasmon-Induced Drag Effect in Metal Nanowires

Maxim Durach,! Anastasia Rusina,! and Mark 1. Stockman'-23+*

]Depanmenr of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
*Max Planck Institute for Quantum Optics, Hans-Kopfermann-Strafle 1, 85748 Garching, Germany
*Ludwig Maximilian University Munich, Am Coulombwall 1, 85748 Garching, Germany
(Received 18 May 2009; revised manuscript received 7 July 2009; published 26 October 2009)

Here, for the first time we predict a giant surface-plasmon-induced drag-effect rectification (SPIDER),
which exists under conditions of the extreme nanoplasmonic confinement. In nanowires, this giant
SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields
up to ~ 10°-10° V/cm. The giant SPIDER is an ultrafast effect whose bandwidth for nanometric wires is
~20 THz. It opens up a new field of ultraintense THz nanooptics with wide potential applications in
nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine.

Gradient Force anc| Maximum THz Field by SPIDER
Pressure Force [ % %, Epg (Viem) (e)

\ 10'6 - — R=5nm I(\
exerted on electror _ R=30nm s
10°+ ——— R=100nm

ﬁ

10‘4_
10° -

Here decay of SPPs is a useful effect!
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week ending

L((- . _ . ., PRL104, 113903 (2010) PHYSICAL REVIEW LETTERS 19 MARCH 2010

. All-Optical Control of the Ultrafast Dynamics of a Hybrid Plasmonic System
PMT 12 123 1 12 I
Tobias Utikal, = Mark I. Stockman, -~ Albert P. Heberle,” Markus Lippitz, *~ and Harald Giessen

ith Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

*Max Planck Institute for Solid State Research, Heisenbergstrafe 1, 70569 Stuttgart, Germany
*Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

start pulse

control pulse
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High-harmonic generation by resonant plasmon
field enhancement

Seungchul Kim'*, Jonghan Jin'¥, Young-Jin Kim', In-Yong Park’, Yunseok Kim' & Seung-Woo Kim'

Vacuum chamber
V0LSG Zeroth-order beam block

FL - ——t__

22 nm
- Nanostructure —
L |
CW . PM /
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: : 2. Corkum, P. B. Phys. Rev: Lett. 71,1994-1997 (1993).
An eaSIer rOUte to hlgh harmony 3. Chang, 7., Rundquist, A, Wang, H., Murnane, M. M. &
Kapteyn, H. C. Phys. Rev. Lett. 79, 2967-2970 (1997).
Mark . Stockman 4. Paul, P. M. et al. Science 292, 1689-1692 (2001).

The generation of ultrashortlight pulses by atomic ionization and
recombination doesn't come cheap. But by niftily exploiting the play of light
on a nanostructured surface, it can be done on a table-top.

¢ Above threshold ionization and

140

. electron recollision in high
»  harmonic generation

= AT
Figure 1| Stripping on the table-top. The EUV
bow-tie-shaped gold nanoantennas used by Kim

et al.' develop electric-field strengths in the gap

Computations courtesy Javier

Alizpurua
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Figure 4 | Measured spectrum of generated high harmonics. A varied-line-
Figure 3 | Scanning electron microscope image of the nanostructure used ' a o T o

for high-harmonic generation. Bow-tie elements were arranged ina two-

dimensional, 36 ¥ 15 array with an area of 10 pm < 10 pm. The inset shows

the magnified image of a single bow-tie element with the important

dimensions marked. Owing to the high magnification, edge lines are seen

blurred by multiple scattering of electrons in imaging,
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Stationary (CW)
spaser regime

This quasilinear dependence

N, (9) is a result of the very

strong feedback in spaser due to

the small modal volume

arXiv:0908.3559
Journal of Optics, 12,
024004-1-13 (2010).

Spaser linewidth «c N
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Amplification in Spaser with a Saturable
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small modal volume 1, ps
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Demonstration of a spaser-based nanolaser

M. A. Noginov', G. Zhu', A. M. Belgrave', R. Bakker”, V. M. Shalaev?, E. E. Narimanov?, S. Stout™”, E. Herz’,
T. Suteewong” & U. Wiesner’
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Figure 1| Spaser design. a, Diagram of the hybrid nanoparticle architecture (in false colour), with 4 =
(not to scale), indicating dye molecules throughout the silica shell. circles represent the 14-nr
b, Transmission electron microscope image of Au core. ¢, Scanning electron strength colour scheme is
microscope image of Au/silica/dye core-shell nanoparticles. d, Spaser mode
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Figure 4 | Stimulated emission. a, Main panel, stimulated emission spectra
of the nanoparticle sample pumped with 22.5m] (1), 9m] (2), 4.5m] (3),

2m] (4) and 1.25m] (5) 5-ns optical parametric oscillator pulses at

A = 488 nm. b, Main panel, corresponding input—output curve (lower axis,
total launched pumping energy; upper axis, absorbed pumping energy per
nanoparticle); for most experimental points, ~5% error bars (determined
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Figure 2 | Spectroscopic results. Normalized extinction (1), excitation (2),
spontaneous emission (3), and stimulated emission (4) spectra of Au/silica/
dye nanoparticles. The peak extinction cross-section of the nanoparticles is
1.1 X 10~ " ¢cm?®. The emission and excitation spectra were measured in a
spectrofluorometer at low fluence.
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by the noise of the photodetector and the instability of the pumping laser) do
not exceed the size of the symbol. Inset of a, stimulated emission spectrum at
more than 100-fold dilution of the sample. Inset of b, the ratio of the
stimulated emission intensity (integrated between 526 nm and 537 nm) to
the spontaneous emission background (integrated at <<526 nm and

>537 nm).
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Fig. 1. Structure of cavity formed by a rectangular semiconductor pillar encapsulated in Silver. E 11
(a) Schematic showing the device layer structure. (b) Scanning electron microscope image =
showing the semiconductor core of one of the devices. The scale bar is 1 micron. - e l‘"‘-w-‘\dw
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Spaser Action, Loss Compensation, and Stability in Plasmonic Systems with Gain

Mark I. Stockman
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

(Received 16 November 2010; revised manuscript received 28 February 2011; published 11 April 2011)

We demonstrate that the conditions of spaser generation and the full loss compensation in a dense
resonant plasmonic-gain medium (metamaterial) are identical. Consequently, attempting the full com-
pensation or overcompensation of losses by gain will lead to instability and a transition to a spaser state.
This will limit (clamp) the inversion and lead to the limitation on the maximum loss compensation
achievable. The criterion of the loss overcompensation, leading to the instability and spasing, is given in
an analytical and universal (independent from system’s geometry) form.

DOI: 10.1103/PhysRevLett.106.156802 PACS numbers: 73.20.Mf, 42.50.Nn, 78.67.Pt, 81.05.X]
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Consider an isotropic metamaterial that can be described by complex

permittivity and permeability. A known homogenization procedure leads

to an exact result for the (effective) permittivity of the composite

_ | L
Elw) = . e(r,w w)|®dV
T fl (. ) le(r, )]

Hear E is the macroscopic field and e(r) is the (mesoscopic) local field
Inside the metamaterial. This local field is expressed as an eigenmode

expansion E_ e (w
e(r.w) = E(w)— Z n E,.(r), sw)= h(w)

s(w) — Sp ch(w) — em(w)

T

where E_(r) Is the eigenmode field. Assume that: there is a resonance
with an n-th eigenmode, the metal has a high quality factor, Q>>1, and
the metal’s fill factor f is not too small, so Qf>>1. Then the effective
permittivity is (where a,, Is a coefficient):

g(w) = |a,|*[s, e, (@) + (1 —5,)e,(w)]
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In the case of the full inversion (maximum gain) and in
the exact resonance, the host medium permittivity acquires
the imaginary part due to the stimulated emission as given
by the standard expression

() A |d|2|znl_,
e lw) = e, — I ,
g d 3 ?TFIZ

(6)

where £; = Reg,, d, 1s the dipole matrix element of the
gain transition in a chromophore center of the gain me-
dium, I'}, is a spectral width of this transition, and n,. is the
concentration of these centers.

The condition for the full electric loss (over)compensation
at the resonant frequency @ = w,, 1s Imé(w) = 0, which

reduces to
47 |dp?nJ1 — Res(w)] _

3 hl',Res(w)lme,,(w)
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At |d12|2 ne |l — Re s(w)] > 1
3 ﬁFlQRES(w)ImEm(MJ B

*This is a criterion for both the loss compensation and spasing

*This criterion i1s analytical and exact, provided that the metamaterials is
resonant and dense, and that its eigenmodes are non-uniform in space
(contain “hot spots’”), which creates an inherent feedback

*Thus, an attempt at a full compensation of losses will cause spasing
Instead, which will saturate the gain transition, eliminate the net gain,
clamp the inversion, and make the complete loss compensation
Impossible

*This criterion does not depend on the geometry of the system or any
specific hot spots of local fields, predicated on the gain medium filling
all the space left by the metal
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Spasing criterion as a function of optical frequency . The straight line (red on line) represents the
threshold for the spasing and full loss compensation, which take place for the curve segments above it.
(a) Computations for silver. The chromophore concentration is 6 x1018 cm-2 for the lower curve (black)
and nc = 3x101° cm3 for the upper curve (blue on line). The magenta solid circle and black diamond
show the values of the spasing criterion for the conditions of Refs. 2 and 3, respectively. (b)
Computations for gold. The chromophore concentration is 3x101° cm-3 for the lower curve (black) and
2x10%° cm-2 for the upper curve (blue on line).
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The recently emerged fields of metamaterials and transformation
optics promise a family of exciting applications such as invisibility,
optical imaging with deeply subwavelength resolution and nanopho-
tonics with the potential for much faster information processing.
The possibility of creating optical negative-index metamaterials
(NIMs) using nanostructured metal-dielectric composites has trig-
gered intense basic and applied research over the past several
years''". However, the performance of all NIM applications is sig-
nificantly limited by the inherent and strong energy dissipation in
metals, especially in the near-infrared and visible wavelength
ranges'"", Generally the losses are orders of magnitude too large
for the proposed applications, and the reduction of losses with opti-
mized designs seems to be out of reach. One way of addressing this
issue is to incorporate gain media into NIM designs'*'*. However,
whether NIMs with low loss can be achieved has been the subject of
theoretical debate''®. Here we experimentally demonstrate that the
incorporation of gain material in the high-local-field areas of a meta-
material makes it possible to fabricate an extremely low-loss and
active optical NIM. The original loss-limited negative refractive
index and the figure of merit (FOM) of the device have been dras-
tically improved with loss compensation in the visible wavelength
range between 722 and 738 nm. In this range, the NIM becomes
active such that the sum of the light intensities in transmission
and reflection exceeds the intensity of the incident beam. At a wave-
length 0of 737 nm, the negative refractive index improves from —0.66
to —1.017 and the FOM increases from 1 to 26. At 738 nm, the FOM is
expected to become macroscopically large, of the order of 10° This
study demonstrates the possibility of fabricating an optical negative-

index metamaterial that is not limited by the inherent loss in its|St

metal constituent.

Vol 4665 August 2010|doi:10.1038/nature09278 nature
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Overcoming Losses with Gain in a Negative Refractive Index Metamaterial

Sebastian Wuestner, Andreas Pusch, Kosmas L. Tsakmakidis, Joachim M. Hamm, and Ortwin Hess™®
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FIG. 3 (color online). (a) Real and imaginary part of the
retrieved effective refractive indices of the double-fishnet struc-
ture for different pump amplitudes. The peak electric field
amplitude of the pump increases in steps of 0.5 kV /cm from
no pumping (cyan line, lightest) to a maximum of 2.0 kV /cm
(black line, darkest). The inset shows the real and imaginary part
of the effective permeability (black and red line, respectively)
and the result of the Kramers-Kronig relation (black and red
dotted lines) for the highest peak electric field amplitude of
2.0 kV /em. (b) The figures-of-merit (FOM) for the same pump-
ing amplitudes.
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BRIEF CONCLUSIONS

Nanoplasmonics is based on nanolocalization of optical fields due to SPs

Enhancement in nanoplasmonics is due to quality factor of SP modes and geometric
concentration. Nanoplasmonics is ultrafast with ~100 as — 10 fs characteristic times
Plasmonic nonlinearities are classified as intrinsic (in the metal), extrinsic (in the embedding
dielectric, or combined. Independently, they are classified as perturbative or nonperturbative
(strong field) nonlinearities

There are abundant examples of ultrafast nonlinear perturbative nonlinearities: multiphoton
electron emission, Kerr effect, nonlinear absorption, three- and four-wave mixing, etc. There
are also strong-field nonlinearities observed of an extrinsic type (high-harmonic generation,
nonlinear photo-ionization, SPASER) and predicted of an intrinsic type (plasmon-solitons,
metallization, etc.)

SPASER is an efficient nanoscale generator and ultrafast quantum amplifier with a switch
time ~100 fs for silver and ~10 fs for gold. It has the same size as MOSFET and can perform
the same functions but is ~1000 times faster. Spaser is classified as a nonperturbative
extrinsic nonlinear ultrafast effect

SPASERSs have been observed in a number of experiments

Attempting the full loss compensation in a dense isotropic resonant plasmonic metamaterial
Is shown to lead to spasing that clamps the gain and makes this full compensation

iImpossible. This is, as the SPASER itself, an extrinsic nonperturbative nonlinear effect
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