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ABSTRACT

We have quantitatively established a fundamental limitation on the ultimate spatial resolution of the perfect lens (thin metal slab) in the near
field. This limitation stems from the spatial dispersion of the dielectric response of the Fermi liquid of electrons with Coulomb interaction in
the metal. We discuss possible applications in nanoimaging, nanophotolithography, and nanospectroscopy.

The Veselago lens,1 that is a slab of a left-handed material
with relative dielectric permittivityε ) -1 and magnetic
permeabilityµ ) -1, builds a perfect image of a three-
dimensional object in the far-field zone. Such a lens was
experimentally confirmed in the microwave spectral region.2

As shown by Pendry, the same slab builds also a perfect
three-dimensional image in the near field, deserving the name
of perfect lens,3 as observed later in ref 4. In the near zone,
the requirement for the permeability is lifted, and only the
condition ofε ) -1 is important.

Actually, such a lens is only near-perfect,3 because its
spatial resolution is limited by the losses in the lens’s
material; in the visible range the best material is silver, having
the lowest losses. One of the points of this letter is to suggest
that such losses can be minimized by using a high-index
embedding dielectric that would shift the operational fre-
quency toward the red where the quality factor of silver is
much higher.5 Light amplification can also be used to
compensate these losses.6

In this letter, we investigate a principal limitation on the
resolution of the perfect lens stemming from the spatial
dispersion (nonlocality) of the dielectric response of the
Fermi liquid of interacting electrons in the nanolens material.
Such dispersion leads to the aberrations of this lens in the
wave vector in the plane of the slab. This principally limits
the resolution of this lens, making it imperfect on the scale
below ∼5 nanometers. This effect is independent from the
known sources of the lens imperfection due to optical losses
in the metal and temporal dispersion that is related to these
losses by Kramers-Kronig relations. Even if the absorption
is reduced or compensated by the optical gain as in ref 6,
the spatial dispersion will remain and limit the resolution.

The principal role of spatial dispersion of the surface polar-
itons at high wavenumbers was pointed out two years ago
in preprint7 where it was considered for left-handed (ε < 0
andµ < 0) systems. Only a generic electromagnetic spectrum
was considered, and no quantitative limitations on the spatial
resolution were obtained, in contrast to the present letter.

We consider only near-field imaging and therefore use the
quasistatic approximation, which does not include magnetic
field. Therefore, the left-handedness of the material is
irrelevant. Consider a metal (ε < 0) slab of thicknessb
parallel to thexy plane of the coordinate system, whose
boundaries are atz ) 0 andz ) b. Let there be a unit charge
at a point (0, 0,- a). Then the electric potential to the right
of the slab (z > b) is given by8

whereε is the metal permittivity relative to the host medium,

J0 is a Bessel function,r ) xx2+y2 is the radial coordinate,
andkr is a two-dimensional (2D) wave vector in the plane
of the slab. Forε ) -1 (i.e., for the frequency of the surface
plasmon resonance of the metal), behind the image plane of
z g 2b - a, this potential is an ideal three-dimensional (3D)
image of the original single point charge

If ε is not exactly equal to-1, e.g., due to Imε * 0, then
the image of eq 1 is not ideal, limited by the spatial resolution
of δ ∼ b/(- ln| ε + 1|) g b/ln Q, whereQ ) -Reε/Imε is
the quality factor of the plasmon resonance of the metal.
The highest value ofQ ∼ 100 for any natural material from
the near-infrared to ultraviolet region is for silver for light
frequencypω ≈ 1.2 eV. The surface plasmon resonance
would have shifted to this frequency if the values of host
dielectric constantεh ∼ 100 were available. However, it is
not the case, and the realistic values ofεh ≈ 12 are typical
for wide-band semiconductors (e.g., Al0.2Ga0.8As)9 for pω
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) 2.2 eV. This choice provides the best possible suppression
of the absorption adverse effects.

Now we consider a principally different source of the lens
imperfection, namelyspatial dispersion, or nonlocality of
the dielectric response functionε(ω,k) that depends not only
on frequencyω but also on wave vectork. In metals, the
characteristic wave-vector scale ofε(ω, k) is k ∼ w/VF, where
VF is the electron velocity at the Fermi surface. Fork g |ω|/
VF, there exists the Landau damping that additionally
contributes to the optical losses described by Imε(ω, k).10

For such a spatially dispersive dielectric function, we
should carefully reformulate the boundary conditions for
ballistic electrons at the surface of the metal. We will
consider density of electrons in the metal as constant
neglecting the narrow (width on order of the Debye screening
radius rD ∼ 0.1 nm) Schottky layer in the metal at the
interface. We assume that the semiconductor of the embed-
ding medium is undoped and neglect Schottky-layer electric
fields inside the semiconductor, because they are too weak
to change its dielectric function. We also neglect the Friedel
oscillations10 because their period is too short,∼1/kF ∼ 0.1
nm, wherekF is the electron wave vector at the Fermi surface.

To take into account the effect of boundaries, we assume
specular reflection of electrons from the surface. As was
shown in ref 11, the ideal specular reflection implies that a
nonlocal electrostatic problem for a half-infinite metal is
equivalent to a problem in bulk metal

whereE⊥(x, y, 0) is the normal electric field at this surface,
æi is the field potential in the metal, andε̂ is the nonlocal
dielectric response operator. The Dirac delta function emu-
lates the boundary condition at the metal surface.

For the slab, an electron experiences multiple reflections
from both its surfaces. To correspondingly generalize eq 3,
we reflect each boundary periodically in each other. As a
result, the potentialæi satisfies an equation

whereE⊥
L(x, y, 0) andE⊥

R(x, y, b) are the electric fields at the
left and right faces of the slab.

The solution of eq 4 yields a periodic potential of period
2b in thezdirection with discontinuities of the normal electric
field 2E⊥

L(x, y, 0) atz ) 2nb and 2E⊥
R(x, y, b) at z ) (2n +

1)b. In thek space

whereEL(kr) and ER(kr) are the 2D Fourier transforms of
E⊥

L(x, y, 0) andE⊥
R(x, y, b). Deriving eq 4, we have taken

into account the cylindrical symmetry of the problem. This
potential should be found consistently with the potentials
outside of the metal slab, where they obey the Laplace
equation whose solutions to the left (L) and right (R) of the
slab are

From eq 5, performing the inverse Fourier transform over
kz, we express the continuity equation for the left face of
the metal slab as

where

Similarly for z ) b (the right face of the slab), we get

The other two equations come from the displacement
matching,

whereεL andεR are the host dielectric permittivities to the
left and right of the lens (metal slab).

Solving eqs 7, 9, and 10 forRR andâR, we get

whereT̂ is a 2× 2 transfer matrix with matrix elements

∇(ε̂∇æi) ) 2E⊥(x, y, 0) δ(z) (3)

∇(ε̂∇æi) ) 2 ∑
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1

2)]} (4)
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æL(kr, z) ) RL(kr) exp(krz) + âL(kr) exp(-krz)

æR(kr, z) ) RR(kr) exp[kr(z - b)] + âL(kr) exp[-kr(z - b)]
(6)
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kr
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(RR

âR ) ) T̂·(RL

âL ) (11)

T11 ) [(V2 - u2)εRεL + u(εR + εL) - 1]/(2VεR)

T12 ) [(u2 - V2)εRεL + u(εR - εL) - 1]/(2VεR)

T21 ) [(V2 - u2)εRεL + u(εR - εL) + 1]/(2VεR)

T22 ) [(u2 - V2)εRεL + u(εR + εL) + 1]/(2VεR) (12)
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This transfer matrix,T̂(εL, εR), has the following general
properties:

whereσx is a Pauli matrix.
Consider a system of charges to the left of the lens as the

source of the fields (no charges are to the right of it). Then
the field to the right of the lens is given by eq 6 whereRR

) 0 andâR is explicitly given by

For a unit charge at the point (0, 0,-a), âL(kr) )
8π exp(-kra)/kr. Due to the linearity of the problem, this,
along with eq 14, provides its general solution for any charge
distributions to the left of the lens. Note that the problem
solved is generally dynamic, i.e., time dependent, as de-
scribed by the dependence onω.

There is also interest in the problem of eigenmodes
[surface plasmons (SPs)], see, e.g., ref 12, which is defined
by eq 11 forRR ) âL ) 0. From this, we obtain an equation
for eigenfrequencies of surface plasmons

where a functional dependence onε(ω, k) is indicated.
To simplify eq 8, we adopt conditions realistic forb J 5

nm: b . VF/ω andkr , ω/VF; for instance,VF/ω ≈ 0.5 nm
for pω ) 2.2 eV. Then the integrands are rapidly oscillating
functions forn * 0, and the integrals can be evaluated using
a stationary phase method:

For the case of unit charge andεL ) εR ≡ εh, from eqs 6,
14, and 16, we obtain an explicit solution

Note thatε(ω, 0) can be taken directly from experiment.5

From this, we can obtain an estimate for spatial resolution
δ of the lens with logarithmic precision

The functionc(ω, 0) ∼ VF/ω dominatesδ for b j 5 nm,
which is an effect of the SP dispersion and the related Landau
damping. The same function,c(ω, 0), also determines
dispersion relation (15) of SPs, which forkrb . 1 is

whereωsp is the surface-plasmon frequency (forkf 0). From
this, it is clear thatc(ω, 0) determines also group velocity
of SPsVg ) ωc(ω, 0)εh/[2(1 + εh)]. From experimental data,
which are available for SP frequency ofpω ) 3.67 eV at
metal/vacuum interface, we extract the values ofVg and find
c(ω, 0): c(ω, 0) ) 0.17 - i0.11 nm.13 Microscopic
calculations14 based on Kohn effective potential give negative
value of the real part,c(ω, 0) ) -0.11 - i0.24 nm. A
variational approach15 yields c(ω, 0) ) -0.07- i0.08 nm.

In light of inconsistency of these data and the fact that
our frequencies are much lower, we invoke below the well-
known Klimontovich-Silin-Lindhart formula10,16

where electron plasma frequencyΩe ) x4πNee
2/m, Ne is

the electron density,e is the elementary charge,m is electron
effective mass, andVF is the Fermi velocity of electrons.
Complex function ln(u) is defined as ln(u) ) ln |u| - iπ for
u < 0. Equation 19 is identical to the corresponding result
of the random phase approximation (RPA), which is expected
to work well in our case whenω , Ωe and k , kF. This
formula satisfies general properties of the spatial-dispersive
dielectric response; in particular, it describes Landau damping
for k g ω/VF.

From eq 19, we find and show in Figure 1 the real and
imaginary parts ofVg. The imaginary part is small enough,
which indicates that SPs are well-defined excitations. Forω
) ωsp, from these data we findc(ω, 0) ) 0.44 - i0.053,
which has correct sign but overestimatesRec(ω, 0) with
respect to the experiments discussed above. However, we
expect that RPA works better for the computations presented
below, which are done at a lower frequency ofpω ) 2.2
eV for silver.

Figure 1. Group velocity of surface plasmons as a function of
frequency in units of Fermi velocity. Solid and dashed curves
correspond to the real and imaginary parts.
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] (19)
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tanh(bkr)
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V ) 1
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1
sinhbkr

c(ω, kr) ≡ 1
π ∫-∞

∞ [ε(ω, 0)

ε(ω, k)
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(16)

âR(kr) ) 8πkr
-1
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{[εh + ε(ω, 0) - εhkrc(ω, kr)]

2 exp(2krb) - [εh - ε(ω, 0) +

εhkrc(ω, kr)]
2}-1 (17)

δ ∼ 2b

|ln [Q-2 + |c(ω, 0)/b|2]|
(18)
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To demonstrate the principal limitations imposed by the
spatial dispersion of the dielectric response of metals on
spatial resolution of a metal slab lens, we show in Figure 2
the images of a unit charge position to the left of the lens at
a point (0, 0,-a) as distributions of the electric field potential
in the image plane ofz ) 2b - a. We have chosen the lens
slab thickness to be reasonably small,b ) 5, nm to make
manifest the effects of the spatial dispersion. Without a
spatial dispersion taken into account, we show the image of
a charge by a solid curve. This image practically coincides
with the ideal image of a charge at the image point of (0, 0,
2b -a) for distances from the image centerr g 2 nm. In
sharp contrast, if the spatial dispersion is taken into account
using eqs 6, 16, 17, and 20, then the corresponding potential
distribution shown by the dashed curve in Figure 2 deviates
significantly from the ideal image (the dash-dot curve) at
all distances in the graph. At distancesr < 5 nm, this
deviation becomes dramatic. We have checked that forb )
10 nm such deviations become much smaller (data not
shown), as expected from eq 17.

For nanolithography applications, it is important that the
lens reproduces images of more complex objects. One of
such objects often used for testing is a thin light-emitting
washer that we model as an annulus of uniform optical
polarization (oscillating dipoles). The image on the other side
from the silver slab lens for the case of no spatial dispersion
is shown in Figure 3a. The washer is nearly perfectly
reproduced in the image plane, the contrast is high, and the
edges are weakly smeared out (j 2 nm). In contrast, the
image for the case of spatial dispersion taken into account
(Figure 3b) shows low contrast and very significant smear-
ing out. In particular, the intensity in the center of the washer
is ≈ 60% of the maximum intensity; the smearing of the
edges isJ 5 nm. Thus, the spatial dispersion of the
interacting electron liquid in the metal has a pronounced
deteriorating effect on the nanoimage quality on the scale
of 5 nm or less.

To briefly discuss the results obtained, using a semicon-
ductor environment to shift the surface plasmon frequency
toward the red spectral region, we suggest to dramatically
reduce losses and increase the resolution of the lens to the
order of nanometers. We have shown that at such distances
the main mechanism limiting the resolution of the metal slab
lens is the spatial dispersion of the dielectric response of
the Fermi liquid of interacting electrons in the metal. For a
thin silver slab, this effect limits resolution to∼5 nm. One
of the goals of this letter is to stimulate measurements of
the metal lens’ nanoimaging and surface plasmons’ spatial
dispersion that limits the nanoimage resolution.

The possible applications of our theory include the
nanoimaging and nanolithography in the extreme nanolimit,
where the size of objects and images is∼5 nm. Such
resolutions are predicted for “solid-state immersion” where
the metal slab is surrounded by a semiconductor of high
enough dielectric permittivity. In such applications, the metal
slab protects the modified surface from the direct contact
with the light aperture. Another similar application is the
protection of a nanolithographic mask. In the problems of
nanospectroscopy and ultramicroscopy, the slab lens spatially
separates the probe and object, which, in particular, prevents
their chemical interaction, e.g., damage by the oxygen in a
biological object. Imaging of semiconductor nanostructures
is another application that may allow for the direct imaging
of their electron wave functions.
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