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Ultrafast field control of symmetry, reciprocity, and reversibility in buckled graphene-like materials
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We theoretically show that buckled two-dimensional graphenelike materials (silicene and germanene) subjected
to a femtosecond strong optical pulse can be controlled by the optical field component normal to their plane.
In such strong fields, these materials are predicted to exhibit nonreciprocal reflection, optical rectification, and
generation of electric currents both parallel and normal to the in-plane field direction. Reversibility of the
conduction band population is also field- and carrier-envelope phase controllable. There is a net charge transfer
along the material plane that is also dependent on the normal field component. Thus a graphenelike buckled
material behaves analogously to a field-effect transistor controlled and driven by the electric field of light with
subcycle (femtosecond) speed.
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I. INTRODUCTION

Novel Dirac materials such as silicene or germanene [1–7]
are monolayers of silicon or germanium with hexagonal lattice
structures where charge carriers at the Fermi surface are, as in
graphene, Dirac fermions [8–16]. Recently, silicene has shown
[17] promise for applications in electronics such as field-effect
transistors (FETs) [18–21] where, being a semiconductor, it
has a natural advantage over graphene that is a semimetal.
Below we will consider silicene but all qualitative results are
also valid for germanene.

In this paper we theoretically predict that a single mono-
layer of silicene (germanene) is controllable at optical frequen-
cies by a normal component of the incident optical field just
like the gate voltage controls channel current in FETs. The
main difference between silicene and graphene is that due to
a larger radius of a Si (or Ge in germanene) atom compared
to a C atom, the corresponding hexagon lattice in silicene
has a buckled structure [22] consisting of two sublattices that
are displaced vertically by a finite distance Lz ∼ 0.5 Å; see
Fig. 1(a). As a result, silicene has large spin-orbit interaction,
which opens up band gaps at the Dirac points (�so ≈ 1.55–7.9
meV for silicene [4,5] and �so ≈ 24–93 meV for germanene
[4,5]). For graphene, the corresponding spin-orbit-induced gap
is very small, 25 μeV [23]. The buckled structure of the
silicene/germanene lattice allows also for the band gap to be
controlled by an applied perpendicular electric field [24]: the
band gap increases almost linearly with this electric field.

Phenomena in silicene in a strong optical pulse field are
illustrated in Figs. 1(b)–1(e). A strong optical field causes
electron transfer in the direction of the force [25,26]. In
fact, a strong optical field in the z direction (normal to
the silicene plane) decreases symmetry of the system from
honeycomb (six-order, centrosymmetric) to triangular (third-
order, noncentrosymmetric). This leads to the appearance of
effects such as optical rectification and induction of currents
normal to the in-plane component of the applied electric field.

*hkoochakikelardeh1@student.gsu.edu
†vapalkov@gsu.edu
‡mstockman@gsu.edu

Microscopically, the z component of the strong field causes
transfer of electrons between the sublattices. Assume for
certainty that, for the chosen pulse, electrons are transferred
from A to B. (Note that the change of the maximum field
to the opposite, i.e., change of the carrier-envelope phase of
the pulse by π , would obviously cause an opposite transfer.)
In the case of in-plane field F2D polarized in the y direction,
there is an electron transfer in both the y and x directions; see
Fig. 1(b). The symmetry of the system dictates that with the
reversal of F2D (for the same z component, Fz) the y current
changes to the opposite but the x current does not change, as
shown in Fig. 1(c). This implies, in particular, that the system
causes optical rectification in the x direction, which is due to
the absence of symmetry with respect to the reflection in the
yz plane for either sublattice.

A fundamentally different scenario takes place for F2D in
the x direction; see Figs. 1(d) and 1(e). In this case, there is
no current in the y direction due to symmetry with respect to
reflection in the xz plane. With respect to field F2D changing
to the opposite, the x current does not have any definite parity,
which is rectification in the x direction.

To provide for the field-effect control of optical phenomena
in silicene, the z component of the pulse electric field should
be strong enough: Fz � �ω/(eLz) ∼ 2 V/Å, where ω is the
optical frequency. Then, necessarily, the pulse should be very
short, on the femtosecond scale, to allow the processes to be
complete before significant damage to the lattice may have
occurred; see Sec. II below. For such fields, there may be
partial adiabaticity (reversibility) set on, which we will show
below in Sec. III.

II. MODEL AND MAIN EQUATIONS

At the present time, record-setting ultrashort optical pulses
have length ≈1.5 optical period [25,27], with duration of just
a few femtoseconds. We will idealize and simulate such an
ultrashort pulse with the following single-oscillation wave
form,

F (t) = F0e
−u2

(1 − 2u2), (1)

where F0 is the amplitude, which is related to the pulse power,
P = cF 2

0 /4π , c is the speed of light, u = t/τ , and τ is the
pulse length, which is set τ = 1 fs. Note that this wave form
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FIG. 1. (Color online) (a) Hexagonal lattice structure of 2D
silicene. The lattice consists of two inequivalent sublattices labeled
by “A” and “B”. Sublattices A and B are shifted in the z direction by
distance Lz. The angle of incidence of the pulse is θ . (b) Schematic of
in-plane electron transfer induced by in-plane pulse electric field F2D

directed along the y axis as shown. The curved red arrows indicate
the electron transfer between the sublattices. (c) The same as (b) but
for the opposite F2D . (d) The same as (b) but for the field directed
along the x axis. (e) The same as (d) but for the opposite F2D . The
z components of the pulse field have the same direction in all cases.

has zero area,
∫ ∞
−∞ F (t)dt = 0, which is required for a pulse

propagating in the far-field zone.
We consider a p-polarized laser pulse with polarization

direction parallel to the plane of incidence, orientation of
which is determined by an angle ϕ measured relative to axis x.
Here the xy coordinate system is introduced in the plane of
silicene/germanene, oriented as shown in Fig. 1(a). The angle
of incidence of the laser pulse is denoted as θ .

Similar to graphene, the silicene/germanene monolayer has
honeycomb lattice structure, which is shown in Fig. 2(a).
The lattice has two sublattices, labeled “A” and “B”, and
is determined by two lattice vectors, a1 = a/2(

√
3,1) and

a2 = a/2(
√

3,−1), where a is lattice constant, which is
3.866 Å for silicene and 4.063 Å for germanene. The distance
between the nearest neighbors is a/

√
3. The first Brillouin

zone of the reciprocal lattice is a hexagon and is shown
in Fig. 2(b). The points K = (2π/a)(1/

√
3,1/3) and K ′ =

(2π/a)(1/
√

3,−1/3) are the Dirac points. In the buckled
structure [see Fig. 1(a)], the z-shift distance is Lz = 0.46 Å and
Lz = 0.66 Å for silicene and germanene, respectively [4,5].

For a graphene monolayer, where spin-orbit coupling is
extremely small (≈0.03 meV), energy gaps at the Dirac points
are correspondingly very small and can be set as zero for any
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FIG. 2. (Color online) (a) Hexagonal lattice structure of 2D
silicene/germanene. The lattice consists of two inequivalent sub-
lattices labeled by A and B. The vectors a1 = a/2(

√
3,1) and

a2 = a/2(
√

3,−1) are the direct lattice vectors of silicene/germanene.
The nearest-neighbor coupling, which is characterized by the hop-
ping integral γ , is also shown. (b) The first Brillouin zone of
silicene/germanene. Points K and K ′ are two degenerate Dirac
points, corresponding to two valleys of the low-energy spectrum of
silicene/germanene. The blue arrow shows the in-plane (xy plane)
component of the time-dependent electric field of the pulse. The
in-plane field, F2d , is characterized by azimuthal angle ϕ.

practical purposes. Then the low-energy spectra near the Dirac
points are well described by the Dirac massless relativistic
equation. For a silicene/germanene system, finite spin-orbit
interaction opens up a much larger gap ∼10–100 meV [24].
Such a gap in the energy spectrum of silicene modifies low-
energy electron transport and interaction between electrons in
weak magnetic fields [28]. However, this spin-orbit interaction
is too weak and, in our case, can be safely neglected compared
to characteristic energy scale, eFzLz, introduced by the strong
electric field of the optical pulse in the buckled Dirac materials.
At the same time, the buckled structure of a silicene monolayer
introduces strong sensitivity of the system to the external
normal field, Fz [24]. Hence, based on this consideration,
below in this article we disregard the spin-orbit interaction
but take into account the buckled structure bringing about the
sensitivity to the normal optical electric field.

The Hamiltonian of an electron in silicene in the field of an
optical pulse has the form

H = H0 + eF2d (t)r + eLzFz(t)

2

(
1 0
0 −1

)
, (2)

where H0 is the field-free electron Hamiltonian, r =
(x,y) is a two-dimensional vector, F2d = (Fx(t),Fy(t)) =
F (t) sin θ (cos φ, sin φ), and Fz(t) = F (t) cos θ . Here the ma-
trix form of the Hamiltonian corresponds to pseudospin, i.e.,
two components of the wave function ψA and ψB , which
describe the amplitudes for an electron to be on the lattice
sites A and B, respectively.

The field-free electron Hamiltonian, H0, describes the
nearest-neighbor tight-binding model of silicene without spin-
orbit terms. This Hamiltonian is exactly the same as the
free-field Hamiltonian of graphene [29–32] and describes the
tight-binding coupling between two sublattices A and B; see
Fig. 2(a). In the reciprocal space, the Hamiltonian H0 is a
2 × 2 matrix of the form [29,30]

H0 =
(

0 γf (k)
γf ∗(k) 0

)
, (3)
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where the hopping integral γ is −1.6 eV for silicene and −1.3
for germanene [24], and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
. (4)

The energy spectrum of Hamiltonian H0 consists of the
conduction band (CB) (π∗, or antibonding band) and the
valence band (VB) (π , or bonding band) with energy dis-
persion Ec(k) = −γ |f (k)| (CB) and Ev(k) = γ |f (k)| (VB).
The corresponding wave functions are

�
(c)
k (r) = eikr

√
2

(
1

e−iφk

)
(5)

and

�
(v)
k (r) = eikr

√
2

( −1
e−iφk

)
, (6)

where f (k) = |f (k)|eiφk .
The characteristic electron-electron scattering time τe−e in

silicene/germanene is expected to be similar to the corre-
sponding time in graphene, which is ∼10–100 fs [33–38].
The duration of the pulse in our problem (τp ∼ 4 fs) is
τp � τe−e. Under our conditions, the external optical field,
F ∼ 1–3 V/Å, is greater than the internal field of an excited
electron, ∼eN 2/3

c a−2 ∼ 0.5 V/A, where Nc ∼ 0.1–0.4 is the
CB population. Another factor to consider is a characteristic
energy of an electron in the external field, Ez ∼ eFzLz (for
the field normal to the silicene plane) and in the plane �ωB ∼
eF2Da (here, ωB is the well-known Bloch frequency). Under
our conditions, Ez,�ωB ∼ 1 eV. Thus the strong field intro-
duces discreteness ∼1 eV in adiabatic one-electron spectrum,
which acquires characteristics of the Wannier-Stark ladder
[39]. Generally, significant spectrum discreteness suppresses
processes of electron-electron interaction.

The arguments presented in the previous paragraph justify
our neglecting electron-electron interaction, scattering in
particular. Therefore, it is not unreasonable to assume that
the electron dynamics in the strong external electric field of
the optical pulse is coherent and can be described by the
time-dependent Schrödinger equation

i�
d�

dt
= H�, (7)

where Hamiltonian H of Eq. (2) has an explicit time depen-
dence.

The electric field of the optical pulse generates both
interband and intraband electron dynamics. The interband
dynamics introduces coupling of the states of the CB and
VB and results in redistribution of electrons between the
two bands. For dielectrics, such dynamics results in its
metallization, which manifests itself as a finite charge transfer
through dielectrics and finite CB population after the pulse
ends [25,40,41].

In the reciprocal space, the intraband dynamics is described
by the acceleration theorem [39],

�
dk
dt

= eF2d (t), (8)

where F2d is the in-plane vector component of the electric field.
This acceleration theorem is universal and does not depend on

the dispersion law. Therefore the intraband electron dynamics
is the same for both the VB and CB. The time-dependent wave
vector kT (q,t) of an electron with initial wave vector q can be
found by solving Eq. (8) as

kT (q,t) = q + e

�

∫ t

−∞
F2d (t1)dt1. (9)

The corresponding electron wave functions are the well-known
Houston functions [42],

�(H )
αq (r,t) = �

(α)
kT (q,t)(r)e− i

�

∫ t

−∞dt1Eα [kT (q,t1)], (10)

where α = v (VB) or α = c (CB).
Using the Houston functions as a basis, we express the

general solution of the time-dependent Schrödinger equation
(7) in the following form:

�q(r,t) =
∑

α=v,c

βαq(t)�(H )
αq (r,t). (11)

Solution (11) is parametrized by initial electron wave vector
q. Due to the universal intraband electron dynamics in the
reciprocal space, the equations, which describe coherent
electron dynamics in the pulse field, become decoupled,
greatly simplifying the problem.

Expansion coefficients βαq satisfy the following system of
differential equations:

dβcq(t)

dt
= −i

F2d (t)Qq(t) + eFz(t)L̃z(t,q)

�
βvq(t), (12)

dβvq(t)

dt
= −i

F2d (t)Q∗
q(t) + eFz(t)L̃z(t,q)

�
βcq(t), (13)

where function L̃z(t,q), which is given by the following
expression,

L̃z(t,q) = Lze
− i

�

∫ t

−∞dt1{Ec[kT (q,t1)]−Ev [kT (q,t1)]}, (14)

is specific to the buckled structure of silicene. It determines the
interband coupling induced by the perpendicular component
of the pulse electric field. Vector function Qq(t) is proportional
to the in-plane interband dipole matrix element,

Qq(t) = D[kT (q,t)]e− i
�

∫ t

−∞dt1{Ec[kT (q,t1)]−Ev [kT (q,t1)]}, (15)

where D(k) = (Dx(k),Dy(k)) is the dipole matrix element
between the states of the CB and VB with the same wave
vector k, namely,

D(k) = 〈
�

(c)
k

∣∣er
∣∣�(v)

k

〉
. (16)

Substituting Eqs. (5) and (6) into Eq. (16), we obtain explicitly,

Dx(k) = ea

2
√

3

1 + cos
( aky

2

)[
cos

( 3akx

2
√

3

) − 2 cos
( aky

2

)]
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)] (17)

and

Dy(k) = ea

2

sin
( aky

2

)
sin

( 3akx

2
√

3

)
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)] . (18)

The system of equations (12) and (13) describes the interband
electron dynamics and determines the mixing of CB and VB
states in the electric field of the pulse. For undoped silicene, all
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VB states are initially occupied and all CB states are empty.
Then the initial condition for system Eqs. (12) and (13) is
(βvq,βcq) = (1,0), and the mixing of the states of different
bands is characterized by time-dependent component |βcq(t)|2.
We also define the time-dependent total CB population by the
following expression,

Nc(t) =
∑

q

|βcq(t)|2, (19)

where the sum is over the first Brillouin zone. The CB
population, Nc(t), characterizes the electron dynamics in
silicene and determines whether the dynamics for the entire
system is reversible or not. Namely, the dynamics is reversible
if, after the pulse ends, the CB population, which is the
residual CB population, is small compared to the maximum
CB population throughout the pulse.

Polarization of the system in a time-dependent electric field
also generates electric current, which can be calculated in terms
of the velocity operator from the following expression,

Jj (t) = e

a2

∑
q

∑
α1=v,c

∑
α2=v,c

β∗
α1q(t)Vα1α2

j βα2q(t), (20)

where j = x,y, and Vα1α2
j are matrix elements of the velocity

operator V̂j = 1
�

∂H0
∂kj

. With the known wave functions (5) and
(6) of the CB and VB, the matrix elements of the velocity
operator are

Vcc
x = −Vvv

x = aγ√
3�

[
sin

(
akx√

3
− φk

)

+ sin

(
akx√

3
+ φk

)
cos

aky

2

]
, (21)

Vcc
y = −Vvv

y = aγ

�
cos

(
akx

2
√

3
+ φk

)
sin

aky

2
, (22)

Vcv
x = −i

2aγ√
3�

[
cos

(
akx√

3
− φk

)

− cos

(
akx√

3
+ φk

)
cos

aky

2

]
, (23)

and

Vcv
y = −i

2aγ

�
sin

(
akx√

3
+ φk

)
cos

aky

2
. (24)

The interband matrix elements of the velocity operator,
Vcv

x and Vcv
y , are related to the interband dipole ma-

trix elements, Vcv
x = iDx(k)[Ec(k) − Ev(k)]/� and Vcv

y =
iDy(k)[Ec(k) − Ev(k)]/� [43]. Within the nearest-neighbor
tight-binding model, silicene has electron-hole symmetry,
which results in the relation Vcc

y = −Vvv
y .

Let us denote current in the i direction induced by in-plane
field F2d in the j direction as Jij , where i,j = x,y. Similarly
we denote charge transferred after the pulse ends through the
system as Qij . This is determined by an expression

Qij =
∫ ∞

−∞
dtJij (t). (25)

The current can be expressed in terms of polarization P(t) of
the electron system as J(t) = dP(t)/dt . Then the transferred
charge is determined by the residual polarization of the system

as Qij = Pij (t → ∞), where we introduced tensor indices for
P similarly to those for Jij and Qij . The transferred charge
is nonzero only due to irreversibility of electron dynamics in
the optical pulse field. For completely reversible dynamics,
when the system returns to its initial state after the pulse, the
transferred charge would be exactly zero.

III. RESULTS AND DISCUSSION

A. Band population dynamics in strong pulse field

The principal distinction of silicene from graphene is that
the sublattices, A and B, are separated “vertically” (i.e.,
in the z direction) by an appreciable distance, Lz ≈ 0.5 Å;
see Fig. 1(a). The strong field of the optical pulse causes
nonperturbative nonlinear changes in the material. Such
phenomena are sensitive to the maximum field of the pulse,
which is amplitude F0. For our choice of pulse Eq. (1), the
maximum of the carrier oscillation occurs at the maximum of
the pulse envelope. That is, the carrier-envelope phase (CEP)
is zero; see Fig. 3(a) illustrating the pulse wave form.

The CB population, Nc, calculated in accord with Eq. (19)
for pulse polarized in the yz plane is displayed in Fig. 3(b) as a
function of time t for different field amplitudes and incidence
angle θ = ±80◦. Note that because silicene is symmetric
with respect to reflection in the xz plane, the results for
both 80◦ and −80◦ are identical. The two most prominent
features of this dynamics are that (i) the dependence on
the pulse amplitude is very nonlinear, and (ii) the residual
(after the pulse end) populations, N (res)

c , are close to the
maximum populations during the pulse. The latter property
is similar to that in graphene [26]. However, it is in sharp
contrast to that in silica, cf. Refs. [44] (theory) and [25,45]
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FIG. 3. (Color online) (a) Pulse wave form as given by Eq. (1)
for F0 = 2 V/Å. (b) For excitation pulse polarized in the yz plane,
CB population Nc is shown as a function of time for pulse amplitudes
F0 indicated. Incidence angle θ = ±80◦. (c) The same as (b) but for
the pulse polarized in the xz plane with the direction of the maximum
field, F, shown in the inset; incidence angle θ = 80◦. (d) The same
as (c) but for θ = −80◦.
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(experiment), where the residual CB populations are relatively
small. This large residual CB population for silicene suggests
lack of adiabaticity, which is likely due to a relatively small
distance of the transfer between the two sublattices in the
xy plane, Lxy = a/(2

√
3) ≈ 0.7 Å, in this case. Note that

the adiabaticity parameter is δ = �ω/(eFyLxy). Adiabaticity
requires δ 
 1 while, in our case, even at the strongest fields,
the adiabatic parameter is not too small, δ � 1.

The response for the case of the pulse polarized in the xz

plane is displayed in Figs. 3(c) and 3(d). In stark contrast to the
case of the yz polarization considered above in the previous
paragraph, here there is a dramatic difference between θ = 80◦
and θ = −80◦. This is due to the violation in the reflection
symmetry induced by the z component of the maximum field.
For the case illustrated, this field promotes transfer of electrons
predominantly toward the B sublattice; cf. Fig. 1(a).

For θ = 80◦ as shown in Fig. 3(c), the x component of
the maximum field, Fx < 0, promotes transfer of electrons
from left to right (in the direction x > 0) according to their
negative charge; cf. Fig. 1(d). The distance of transfer is the
same as in the case of the yz-polarized field Lxy = a/(2

√
3) ≈

0.7 Å and adiabaticity is violated since δ = �ω/(eFyLxy) � 1.
Correspondingly, the residual CB populations N (res)

c are again
close to their corresponding maxima during the pulse.

Dramatically different behavior takes place for the recipro-
cal incidence, θ = −80◦, where the CB population kinetics
is displayed in Fig. 3(d). For relatively weak fields, F0 =
0.5–1.5 V/Å, the kinetics is essentially irreversible, where the
maximum CB population is attained at the end of the excitation
pulse, similar to the case of Fig. 3(c) considered above in the
previous paragraph. In sharp contrast, for stronger fields, F0 =
2–3 V/Å, there is partial reversibility: at the end of the pulse
the CB population is reduced by a factor of ≈2 with respect to
its maximum. This is related to improved adiabaticity, i.e., de-
creased adiabaticity parameter, δ = �ω/(eFyLxx) � 1 where
Lxx = a/

√
3 ≈ 1.4 Å is the horizontal transfer distance; see

Fig. 2(a). This distance is twice longer than for the case
of Figs. 1(c) and 1(d) corresponding to the polarizations in
Figs. 3(b) and 3(c).

Note that the adiabaticity in the case of Fig. 3(d) is
incomplete; for comparison, in the case of silica (quartz) a
nearly perfect adiabaticity has been predicted and observed
[27,44]. This high degree of adiabaticity is most certainly
related to a wide band gap, �g (see also Ref. [40]) and
to a significantly larger lattice constant, a ≈ 5 Å, in quartz.
Both these factors determine adiabaticity, which is pronounced
when �ω/�g 
 1 and �ω/(eF0a) 
 1. Thus one should not
expect near-perfect adiabaticity in graphene (cf. Ref. [26]),
silicene, and germanene where �g is negligible, and a is
relatively small.

B. Ultrafast currents induced by strong pulse

Electrical current is due to displacement of charges caused
by the applied pulse field. For free classical electrons, this
current is proportional to their mean velocity, i.e., to the
integral of the field, often referred to as vector potential,

A(t) = −c

∫ t

−∞
F2d (t ′)dt ′. (26)

In contrast to free electrons, as we have argued above in
Sec. III A, the strong field acting on the electrons in a crystal
lattice of silicene causes effective symmetry reduction from
honeycomb to triangular and, in particular, dependence of
the electron dynamics on the sign of the maximum field; cf.
Figs. 3(c) and 3(d). The observed partial adiabaticity is also
due to the presence of the periodic lattice and defined by its
period in the field direction.

The effective reduction of symmetry to triangular (where
there is no inversion center) caused by the strong normal (z)
field component causes the currents in the silicene lattice to
be highly anisotropic and nonreciprocal as we show below in
this section. Let us denote JXX an x component of the current
density induced by the field polarized in the xz plane with the
maximum in the negative x direction as shown in Fig. 3(c).
Similarly, we denote JX̄X the x component of the current
density caused by the field with the maximum in the positive
x direction as in the case of Fig. 3(d). Note that generally
JXX �= −JX̄X (as would have been the case for free electrons)
due to the low, triangular effective symmetry.

Similarly, we introduce current density JYY as the y compo-
nent of the current density induced by the yz polarized pulse.
Note that in this case, the presence of the xz-symmetry plane
dictates that JYY = −JȲY . Interestingly enough, the in-plane
field in the y direction causes also a current in the x direction
[cf. Figs. 1(b) and 1(c)], whose density we will denote as JYX.
Note that due to the symmetry, this current is invariant with
respect to inversion in the xz plane; i.e., JYX = JȲX.

In Fig. 4, we plot the temporal behavior of the current
density for the four independent cases of the pulse polarization
and current direction, XX, X̄X, YY , and YX, as indicated in
the panels; the currents in all other cases are either related to
these cases by symmetry, as presented in the previous two
paragraphs, or equal zero as, e.g., JXY and JX̄Y . For the
XX case shown in Fig. 4(a), in the relatively weak fields,
F0 � 1 V/Å, the current density, JXX, obviously, qualita-
tively follows the vector potential, A(t) reaching (negative)
maximum at approximately quarter oscillation period and
turning to zero at the maximum field (t = 0). Kinetics JXX(t)
is approximately antisymmetric with respect to point t = 0,
which shows that this process is nearly time reversible.

However, at higher fields, the behavior in Fig. 4(a) becomes
nontrivial. The first manifestation of this behavior appears
at F0 = 1.5 V/Å where instead of a pronounced minimum
(maximum negative current) there is a plateau, which turns
to a maximum for F0 � 2 V/Å. We attribute this behavior
to electrons that are compelled by the field force to drift in
the reciprocal space across the K point. We will discuss this
behavior in more detail in conjunction with Fig. 4(c); see
below.

A phenomenon of fundamental importance is the loss of
adiabaticity in higher fields, which manifests itself in the
lack of antisymmetry with respect to point t = 0 in Fig. 4(a).
Note that nonadiabaticity also implies irreversibility [48] and,
consequently, violation of time-reversal symmetry (called also
T invariance or T symmetry). This violation of adiabaticity
is related to a gradual transfer of population between the
A and B sublattices, as we discussed above in Sec. III A.
Such transfer is not instantaneous; one can estimate the
characteristic time it requires as ttr ∼ π�/(eLzF0). For a high
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FIG. 4. (Color online) Current dynamics in silicene subjected to
strong field pulse. The broken line displays the shape of the excitation
pulse. The numbers labeling the curves are the corresponding field
amplitudes F0 (V/Å). (a) The x component of the current density,
Jx , as a function of time t for the excitation pulse polarized in the
xz plane with the direction of the maximum in-plane field, F0x , in
the negative x direction [same as in Fig. 3(c)]. (b) Same as in panel
(a) but for negative current and for the opposite direction of F0x [as
denoted as X̄X, corresponding to Fig. 3(d)]. (c) The y component
of the current density, Jy , as a function of time t for the excitation
pulse polarized in the yz plane. (d) Same as in panel (c) but for the x

component of the current density.

field used, F0 ∼ 2 V/Å, we obtain ttr ∼ 1 fs. This is in full
qualitative agreement with the results of Fig. 4(a), where the
time-reversal asymmetry becomes pronounced for high fields
and times longer than ∼1 fs from the moment the pulse is
applied.

One of the consequences of the T-invariance violation is
nonzero values of the transferred charge and of the residual
polarization—see Eq. (25) and Fig. 6 and the corresponding
discussion—violating the T symmetry and adiabaticity.
This implies that the system’s dynamics is irreversible
(nonadiabatic), which may surprise one because the system is
completely Hamiltonian. This is due to the fact that the central
frequency of the laser radiation, �ω ≈ 1.5 eV, is close to
the transition frequency between the electron states localized
at the two sublattices, ��ω ∼ π�/ttr = eLzF0 ∼ 1.4 eV.
This causes resonant absorption leading to dephasing—
collisionless relaxation widely known as Landau damping
[46].

Current kinetics for the X̄X case displayed in Fig. 4(b) is
qualitatively similar to that for the XX case discussed above in
the previous three paragraphs. However, the symmetry reduc-
tion caused by the nonlinear interaction with a controlled (zero
in our case) CEP causes current JX̄X to differ quantitatively
from JXX, which difference is pronounced in the second
half-period (t > 0) where the T asymmetry of the current
becomes evident. The latter is due to the nonadiabaticity,
already mentioned above in the discussion of Fig. 4(a): the
transfer of the electrons between sublattices occurs during a
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FIG. 5. (Color online) Electron momentum distribution |βck|2 in
the first Brillouin zone in the CB for pulse with maximum field F0 =
2.5 V/Å with the Y polarization of the in-plane field (the maximum
in-plane field directed along the positive y axis). (a) Distribution
at the moment of time t = −1.3 fs corresponding to the maximum
negative current JYY . (b) Distribution at the moment of time t =
−0.7 fs corresponding to the maximum positive oscillation of current
JYY .

finite period of time, ttr ∼ π�/(eLzF0) ∼ 1 fs, comparable
with the half optical period in our case.

The YY case illustrated in Fig. 4(c) is not related by crystal
symmetry or other invariances to the XX and X̄X cases
considered above. However, the kinetics of JYY is qualitatively
similar to, though quantitatively different from, the previous
two cases. Note that there is strict symmetry JȲY = −JYY .
Here also the T symmetry is violated: the kinetics in the first
and second half-periods is dramatically different. Note that in
this case, current at the end of the pulse may not vanish, which
is certainly due to absence of collisions and other interactions
in the model. Note that the electron-electron collisions are
the fastest interaction-induced relaxation process. However, it
takes the electron-electron collisions ∼10–20 fs in a similar
two-dimensional system, graphene, to make an effect [36],
which is too long for our pulse whose entire duration is less
than 4 fs.

The results for current JYX (in the x direction induced by
the field in the y direction) are displayed in Fig. 4(d). Note
that exactly JYX = JȲX due to symmetry. Without an electric
field applied, silicene is a center-symmetric solid. Therefore
for low fields current JYX should vanish. This is, in fact, the
case with a good accuracy for F0 = 0.5 V/Å, as one can see
in Fig. 4(d). With field increasing, there is an increased current
JYX. Predominantly, it is directed along the negative x axis, as
is understandable from comparison with Figs. 1(b) and 1(c).
Note that magnitude of this current is approximately an order
of magnitude smaller than JYY .

The origin of the current oscillations for strong fields,
F0 � 2 V/Å, in Figs. 4(a)–4(c) can be understood from
the electron momentum distribution. Consider for certainty
the YY case, where the current is shown in Fig. 4(c). The
corresponding momentum distribution for electrons in the CB,
|βck|2, for pulse field amplitude F0 = 2.5 V/Å is displayed in
Fig. 5(a) for moment of time t = −1.3 fs, corresponding to the
minimum (the maximum negative value) of the current, JYY .
At this instance, which just precedes the current oscillation,
excess electron population (depicted by green) is concentrated
at ky < 0, kx = +0 (i.e., at small positive values of kx). This
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FIG. 6. (Color online) Charge density Q transferred in the plane
of the silicene layer as a function of the maximum pulse field, F0.
Four cases are displayed: QXX, −QX̄X , QYY , and QYX , as labeled in
the figure. All other components of the charge density transferred are
either zero or related to these four cases.

excess population is formed due to field force eFy(t) > 0 that
propels the electrons across the K points at ky ≈ 0.6 Å−1,kx ≈
±1 Å−1 into the second Brillouin zone in the extended zone
picture; these electrons appear in the first Brillouin zone at the
K point at ky ≈ −1 Å−1,kx = +0. Generally, the interband
electron transfer occurs predominantly at the K points where
the dipole matrix elements, which couple the VB and the CB,
are singular. This singular coupling also generates electron
distributions that are dramatically different for kx > 0 and
kx < 0. This asymmetry is due to the lack of the center
symmetry in the presence of strong field Fz; i.e., it has the
same origin as current JYX described above in the previous
paragraph. Note that there is also the second localization of
electrons around the K ′ point at kx ≈ 1 Å−1, which is also
sharply asymmetric in the x direction for the same reason.

A dramatically different electron distribution is displayed
in Fig. 5(b) for t = −0.7 fs when current JYY experiences the
maximum upswing. This is caused by a significant number of
electrons in the CB with ky > 0 which appear due to a drift
in the reciprocal space under force eFy > 0. These electrons
make a positive contribution to the current (their group velocity
vg < 0; correspondingly, due to e < 0, their contribution to
JYY is positive). The momentum distributions in Fig. 5 also
appear discontinuous due to the same reasons as in Fig. 5(a)
discussed in the previous paragraph.

The currents described above in conjunction with Fig. 4
cause transfer of charge across the system and accumulation
of charges by the end of the pulse as given by Eq. (25).
Such charge Q transferred through the system is displayed
as a function of the field amplitude, F0, in Fig. 6 for four
independent combinations of the field and current directions,
XX, X̄X, YY , and YX. A remarkable property of these results
is that in all cases, except for YX, the charge transferred
changes its sign as the field amplitude increases. This can be
attributed to the increased number of electrons experiencing
the Bragg reflections at the Brillouin zone boundary, especially
at the K points, with the field increase. Thus this sign change of
the transferred charge has the same origin as the current oscil-
lations in Fig. 4 as described above. This charge accumulated

at the pulse end is an experimentally observable quantity just
as the previous experiments on currents in dielectrics [25,47].
On the order of magnitude, this accumulated charge in Fig. 6 is
Q ∼ 1 fC/μm. For a ∼1 μm focused spot, this gives a ∼1 fC
transferred charge. Such a charge is on the same order of
magnitude as in experiments Refs. [25,47] and is, in principle,
reliably observable.

IV. CONCLUDING DISCUSSION

This work examines the effects of reduction of fundamental
symmetries in buckled two-dimensional crystals such as
silicene and germanene induced by a strong ultrashort pulse.
In our case, the interaction with the pulse field is a dominant
term in the Hamiltonian. Correspondingly, we neglect effects
of the electron-electron interaction within the time frame of
the experiment: ∼1–2 fs duration of the pulse. Importantly, the
phenomena considered are symmetry-defined and, therefore,
are qualitatively robust with respect to the effects of electron-
electron interaction.

At high optical fields F∼1–3 V/Å, breakdown of the
material may potentially, but not necessarily, occur. It is
known experimentally [25,27] that for ultrashort (∼1.5 optical
oscillation) near-IR strong pulses, breakdown of 3D dielectrics
silica and quartz occurs at very high fields, F � 2.7 V/Å. Gold
electrodes also survive such pulses [25]. The experimental
situation with similar breakdown of graphene, silicene, and
germanene is still unknown. In any case, the charge transfer
considered in the present article occurs on a scale of half optical
period, a fraction of a femtosecond, and can be measured per a
single pulse even if the material in the laser focus is eventually
damaged (the lattice damage will form at times on the order
of vibrational periods, i.e., tens of femtoseconds).

The accumulation of charge, Q, transferred through the
system implies a dramatic manifestation of fundamental
symmetry violation. This charge accumulation violates simul-
taneously the parity symmetry (P symmetry) and the charge-
inversion symmetry (C symmetry). This violation happens due
to the fact that our pulse is short and has a controlled CEP (zero
in our case): the maximum field is reached at the maximum
of the envelope (instance t = 0). Due to strong nonlinearity
of the system for fields F0 � 1 V/Å applied, this maximum
field defines a selected direction in the system plane for the
force acting on electrons. This causes the violation of the
C and P symmetries. This is actually a general property for
systems subjected to short, strong, CEP-controlled pulses. It
takes place in both two-dimensional solids such as graphene,
silicene, germanene, and also conventional three-dimensional
solids such as fused silica, sapphire, etc. In particular, it was a
fundamental origin for the charge transfer in silica and quartz
in the original experiments [25].

A symmetry violation specific for silicene is related to
the electron transfer between the sublattices caused by the
normal field component Fz, which effectively reduces the
system’s symmetry from hexagonal to triangular. This causes
nonreciprocity, JX̄X �= −JXX, and the appearance of a cross
current, JXY �= 0. Note that anisotropy in the xy plane,
JXX �= JYY , is inherent in both silicene and graphene.

Our zero-CEP pulse is T symmetric; in the absence of the
T-symmetry violation, the current should be T odd, which
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would preclude the accumulation of charges after the pulse.
However, we have seen from the results of Figs. 4(a)–4(c)
that the current is not antisymmetric in time; i.e., there is a
significant violation of the T symmetry, which we attribute to
the Landau damping. This is inherent in both graphene and
silicene and is due to the absence of a significant band gap;
this is in contrast to silica that is almost perfectly T reversible
[25,27]. An additional contribution to T irreversibility stems
from the fact that the frequency associated with the electron
transfer in the normal direction, eFzLz/�, is on the same order
as the carrier frequency of the pulse. This causes resonant
absorption of the excitation pulse and the Landau damping,
specific for the silicene (and also germanene). If adiabaticity
were present, it would have guaranteed reversibility and would
have forbidden the charge accumulation.

Finally, we note a close analogy of silicene with the
field-effect transistor (FET) [18–21]. In FETs, the gate field,
applied normally to the conducting channel, changes the
carrier populations in it and, thereby, controls its conductance.
Analogously, in silicene, the normal field component, Fz,
transfers carriers to one of the sublattices, A or B, thereby

changing the system’s response to the in-plane field. A
fundamental difference (and advantage) of silicene is that such
a “device” works at optical frequencies, with the response time
on the (sub)femtosecond scale. This opens a potential for many
applications of silicene in future petahertz-speed devices and
applications.
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