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From the fundamental requirement of causality, we derive a rigorous criterion of negative refraction
(left handedness). This criterion imposes the lower limits on the electric and magnetic losses in the region
of the negative refraction. If these losses are eliminated or significantly reduced by any means, including
the compensation by active (gain) media, then the negative refraction will disappear. This theory can be
particularly useful in designing new left-handed materials: testing the expected polarizabilities of a
medium against this criterion would check the compliance with the causality and verify the design
feasibility.
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Recently there has been significant attention devoted to
the so-called left-handed materials (LHM), which are also
called negative-refraction media [1–13]. In such materials,
the directions of energy transfer and wavefront propagation
are opposite. This leads to remarkable electromagnetic
properties such as refraction at surfaces that is described
by a negative-refraction index n. This, in turn, causes a flat
slab of a left-handed material with n � �1 to act as a
‘‘perfect lens’’ creating, without reflections at the surfaces,
a nondistorted image. This is a so-called Veselago lens
[14]. Moreover, such a lens can also build an image in the
near field [15]. Optical losses in LHMs are detrimental to
their performance. These losses for LHMs in the near-
infrared and visible region are significant [8–11], which
drastically limits their usefulness. There have been pro-
posals [16–18] to compensate these losses and also ab-
sorption in the plasmonic perfect lens [19] with optical
gain. This compensation is similar to the idea of spaser or
nanoplasmonic laser [20–22]. This idea appears to be a
way to resolve this loss problem.

In this Letter, we show that compensating the optical
losses, or by any means (material or structural) signifi-
cantly reducing the imaginary part of the dielectric permit-
tivity " and magnetic permeability �, will necessarily
change also the real parts of these quantities in such a
way that the negative refraction disappears. This follows
from the dispersion relations, i.e., ultimately, from the
fundamental principle of causality. This principle is con-
ventionally expressed by the familiar Kramers-Kronig dis-
persion relations (see, e.g., Ref. [23]). Here, we derive
similar dispersion relations for the squared refractive in-
dex. Using them we show that a significant reduction in the
optical losses at and near the observation frequency will
necessarily eliminate the negative refraction.

The Kramers-Kronig relations follow from the causality
of the dielectric response function in the temporal domain.
Then one can prove that in the frequency domain permit-
tivity "�!� does not have singularities in the upper half-
plane of the complex variable !. From this and the limit

"�!� ! 1 for !! 1, one derives the conventional
Kramers-Kronig dispersion relation for the dielectric func-
tion. For the same causality reason, magnetic permeability
��!� does not have singularities in the upper half-plane of
complex !. Since also ��!� ! 1 for !! 1, permeabil-
ity ��!� satisfies a similar dispersion relation. Note the
requirement of the response linearity is essential: nonlinear
and saturated polarizabilities generally do not satisfy the
Kramers-Kronig relations [24]. We will below consider
systems including gain media; in those cases we assume
that the optical responses to the signal (observed) radiation
are linear. This, of course, requires the signal to be weak
enough to ensure the linearity of the responses to it and the
applicability of the Kramers-Kronig relations.

We consider a material to be an effective medium char-
acterized by macroscopic permittivity "�!� and perme-
ability ��!�. The squared complex refraction index
n2�!� � "�!���!� has exactly the same analytical prop-
erties as "�!� and ��!� separately: n2�!� does not have
singularities in the upper half-plane of complex ! and
n2�!� ! 1 for !! 1. Therefore, absolutely similar to
the derivation of the Kramers-Kronig relations for the
permittivity or permeability (see, e.g., Ref. [23]), we obtain
a dispersion relation for n2�!�,

 Re n2�!� � 1�
2

�
P
Z 1

0

Imn2�!1�

!2
1 �!

2 !1d!1; (1)

where P denotes the principal value of an integral.
Note that in contrast to n2�!�, refractive index n�!� ������
n2
p

may possess singularities in the upper half-plane and
thus is generally not causal; this is true, in particular, when
optical gain is present [25]. The refractive index n per se
does not enter the Maxwell equations; it is not a suscepti-
bility, and it does not have to obey the causality, while n2

does. This theory is based on n2, not n; the noncausality of
n is irrelevant for its purposes.

Now we assume that at and near the observation fre-
quency ! the material is transparent (e.g., the losses are
compensated by gain), which mathematically implies that
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Imn2�!� � 0 and @�Imn2�!��=@! � 0 (this vanishing is
required only at the observation frequency). Then the
principal value in the right-hand side of Eq. (1) can be
omitted. Multiplying both sides of this equation by !2 and
differentiating over ! (one can differentiate under the
integral over ! as a parameter, because the point !1 �
! is not singular anymore), we obtain

 

@!2�Ren2�!� � 1�

@!
�

4!
�

Z 1
0

Imn2�!1�

�!2
1 �!

2�2
!3

1d!1: (2)

The left-hand side of this equation can be expressed in
terms of the phase velocity vp � �k=k�!=k, where real

wave vector is k �
������������������
Ren�!�2

p
!=c, and c is speed of light,

and group velocity vg � �k=k�@!=@k. In this way, we
obtain
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where "0 � Re", "00 � Im" and, similarly, �0 � Re�,
�00 � Im�; Imn2�!� � "00�!��0�!� ��00�!�"0�!�.

In the case of the negative refraction, the directions of
the phase and energy propagation are opposite, therefore
vpvg < 0. Consequently, we obtain from Eq. (3) a rigorous
criterion of the negative refraction with no (or low) loss at
the observation frequency ! as
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�!2
1�!

2�2
!3
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This criterion directly imposes the lower bounds on the
dielectric losses ["00�!1�> 0], overlapping with the mag-
netic plasmonic behavior [�0�!1�< 0] and the magnetic
losses [�00�!1�> 0] overlapping with the electric plas-
monic behavior ["0�!1�< 0]. The denominator �!2

1 �
!2�2 makes the integral to converge for j!1 �!j large;
it would have diverged at j!1 �!j ! 0 if the integrand
did not vanish at that point. Thus, the major contribution to
Eq. (4) comes from the lossy, overlapping electric and
magnetic resonances close to observation frequency !.

The stability of the system requires that no net gains are
present at any frequency, i.e., "00�!� 
 0 and �00�!� 
 0
everywhere [23]. There is a known condition of negative
refraction [26] Imn2�!�< 0, which for exactly compen-
sated losses should be extended as Imn2�!� 	 0. This
condition is always satisfied in the region of left handed-
ness where "0�!�< 0 and �0�!�< 0. Thus, this condition
is trivial: in contrast to Eq. (4), it does not impose a lower
limit on the losses.

In the absence of magnetic resonances, in the optical
region �0 � 1 and �00 � 0. Then it is obvious than the
integral in the left-hand side of Eq. (4) is strictly positive
and this criterion is not satisfied; i.e., the negative refrac-

tion is absent. In the presence of a magnetic resonance, in a
part of its region �0 < 0 and �00 > 0; thus the criterion (4)
can, in principle, be satisfied. However, this requires non-
zero losses: �00 > 0 and/or "00 > 0.

As an alternative way to satisfy the transparency require-
ment at the observation frequency, one may attempt to add
a gain to exactly cancel out the losses at this frequency
[17,18], keeping them elsewhere to satisfy criterion (4)
from dispersion relation (3). Is it possible from the posi-
tions of causality? Consider a particular example when the
left-handed behavior is due to a resonance at some fre-
quency !r, and that this resonance dominates the behavior
of permittivity "�!1�. Such a resonant behavior is de-
scribed by a simple pole of the permittivity [27], "r�!1� /
�!1 �!r � i��!1��

�1, where ��!1� is a frequency de-
pendent relaxation rate. Because losses are compensated at
the observation frequency, ��!� � 0. Since the losses
should nowhere be negative, it is obvious that ��!� must
have a minimum at frequency !, which implies that
@��!�=@! � 0, and @2��!�=@!2 > 0. Assuming that
the resonance and observation frequencies are close
enough, one can expand ��!1� about frequency ! and
obtain

 "r�!1� /

�
!1 �!r � i

1

2
�!1 �!�2

@2��!�

@!2

�
�1
: (5)

However, this "r�!1� has an extra pole at a complex
frequency

 !1 � !� 2i�@2��!�=@!2��1: (6)

This pole is situated in the upper half-plane, while any
causal quantity as a function of frequency must be analyti-
cal in the upper half-plane. Hence, this behavior violates
causality. Thus, we conclude that in this manner it is
impossible to compensate the losses at a single (observa-
tion) frequency.

It is still possible that both the magnetic resonance and
electric plasmonic behavior are present, but their losses are
compensated by an active-medium gain. However, such
compensation must take place not only at the observation
frequency !, but for the entire region of such resonances
assuming their homogeneous nature. This means that in
Eq. (4) whenever �0�!1�< 0, we have �00�!1� � 0 and
"00�!1� � 0. However, in this case the contribution of this
region to the integral in Eq. (4) vanishes, and the contri-
bution of the region of normal optical magnetic behavior
(� � 1) is always positive. Consequently, the negative-
refraction criterion is violated, which implies the absence
of the negative refraction.

To obtain the negative refraction, the losses in the mag-
netic resonance region not only should be present, but they
should be significant not only to overcome the positive
contribution of the nonresonant region to the integral in
Eq. (4), but actually to make it less than �1. Thus, sig-
nificantly reducing by any means, passive or active (by
gain), the losses of the negative-refraction resonances will
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necessarily eliminate this negative refraction itself. Funda-
mentally, this stems from the fact that the imaginary part
and real part of the squared index of refraction are not
independent but must satisfy the requirements imposed by
the principle of causality.

One has to explore also a possibility to satisfy the
criterion (4) with low losses at the working frequency !
by having a left-handed resonance somewhere else at some
resonance frequency !r remote from ! to satisfy Eq. (4).
The contribution of such a remote resonance to the integral
in Eq. (4) can be approximated as

 

2

�

!3
r

�!2
r �!2�2

Im
Z 1
�1

n2
r�!1�d!1: (7)

Here n2
r�!1� is the resonant contribution to the squared

index. It is assumed that it decreases rapidly enough when
j!1 �!rj ! 1, which is the expression of its resonant
behavior. In this case, it is possible to extend the integral in
this equation over the entire region, as indicated. As re-
quired by the causality, n2

r�!1� does not have any singu-
larities in the upper half-plane of !1. This integral can be
closed by an infinite arc in the upper half-plane, which
gives the zero result due to this absence of the singularities
there. Hence, the distant resonances do not contribute to
the negative-refraction criterion (4). This completes the
proof that zero (or, very low) losses at and near the obser-
vation frequency are incompatible with the negative
refraction.

We point out that in reality these losses do not have to be
zero to eliminate the negative refraction. If they are merely
much smaller than the losses in the adjacent regions that
result in the positive contribution to the integral in criterion
(4), then the negative refraction will be absent.

Simple, exactly solvable (in the sense that they can be
reduced to an explicit transcendental equation), and con-
vincing illustrations of the above theory are provided by
the negative refraction of surface plasmon polaritons
(SPPs) in films with nanoscale thickness. Note that it is a
two-dimensional refraction but our consideration is based
on the principle of causality and is general, applicable to
refraction in spaces of arbitrary dimensions. We emphasize
the examples to follow do not provide a proof but serve
merely as illustrations of the above-given proof.

Consider a flat layer with nanoscale thickness d made of
a material with dielectric permittivity "2 embedded be-
tween two half-spaces of materials with permittivities "1
and "3. The dispersion relation, i.e., wave vector k as a
function of ! or vice versa, of the waves (SPPs) bound to
the nanolayer can be found from an exact, analytical tran-
scendental equation

 tanh�!d"2u2=c� � �u2�u1 � u2�=�u1u3 � u2
2�; (8)

where ui � "�1
i

����������������������������
�kc=!�2 � "i

p
. In this equation and be-

low, we treat k as a complex wave vector whose imaginary
part describes losses.

As the first example, we mention a semi-infinite metal
(silver) covered with a nanolayer of dielectric with a half-

space of another dielectric covering it [28,29]. This system
possesses an extended spectral region of negative refrac-
tion [29]; however, in this region the SPP losses are so high
that the propagation is actually absent, in accord with the
above-presented theory.

Another exactly solvable example of negative refraction
also described by Eq. (8) is given by SPPs in a metal film of
a nanoscopic thickness embedded in a dielectric [30].
There are two metal-dielectric interfaces and, correspond-
ingly, two modes of SPPs in this system. Because there is
symmetry with respect to the reflection in the middle
plain, these SPP modes are classified according to their
magnetic-field parity: symmetric and antisymmetric. As an
example, we consider a silver film with thickness d �
30 nm in vacuum. The corresponding dispersion relations
are shown in Fig. 1. As we see from panel (a), the sym-
metric SPPs have regions of both the positive refraction
(Rek < 2� 105 cm�1) and negative refraction (Rek >
2� 105 cm�1), while the antisymmetric SPPs possess
only the positive refraction. The optical losses are shown
in Fig. 1(b). For most of the positive-refraction region of
the symmetric SPPs and in the entire spectral range of the
antisymmetric SPPs, these losses are relatively very small:
Imk� Rek. However, for the symmetric SPPs (the solid
line) close to the negative-refraction region, the losses
dramatically increase by orders of magnitude. Inside the
negative-refraction region, they are extremely high,
jImkj * jRekj, so the propagation is overdamped and ac-
tually absent, in the full agreement with the conclusions of
the present theory [31].

Yet another system that supports the negative-refraction
SPPs is a dielectric nanolayer embedded in a metal [30,32].
This system is also symmetric and possesses two metal-
dielectric interfaces. Therefore it supports two branches of
SPPs that are characterized by parity. The corresponding
dispersion relations are displayed in Fig. 2. The real part of
the dispersion relation for these two types of modes is
displayed in panel (a). From it we see that in the entire
spectral region the symmetric SPPs (dashed line) have
normal, positive refraction (vg > 0), while the antisym-
metric SPPs (solid line) are negative refracting (vg < 0).
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FIG. 1. Dispersion relations for thin silver film in vacuum. The
symmetric and antisymmetric modes are displayed with solid
and dashed lines, respectively. (a) Real part of dispersion rela-
tion: frequency ! as a function of Rek. (b) Imaginary part of the
dispersion relation: dependence of Imk on Rek. Thickness of the
silver film is d � 30 nm.
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The corresponding losses are displayed in Fig. 2(b). We
note that the losses of the positive-refraction, symmetric
mode (dashed line) are relatively small in the entire region,
Imk� Rek. In a sharp contrast, for the antisymmetric,
negative-refraction mode (solid line), the losses for small
wave vectors are very high, jImkj * Rek, so the wave
propagates through only a few periods before it dissipates.

To conclude, from the fundamental principle of cau-
sality, we have derived a dispersion relation (1) for the
squared refraction index. From it, assuming a low loss at
the observation frequency, we have derived a criterion (4)
of the negative refraction. We have shown that the low loss
at and near the observation frequency is incompatible with
the existence of the negative refraction [33]. While at the
THz region the losses may not be significant, they are very
large in the optical region. The loss compensation or
significant reduction will necessarily lead to the disappear-
ance of the negative refraction itself due to the dispersion
relation dictated by the causality.
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Office of Basic Energy Sciences, Office of Science, U.S.
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Note added in proof.—After this Letter was submitted, a
recent experiment [34] found negative two-dimensional
refraction for a nanoscopic dielectric layer in metal with
significant optical losses, Imk=Rek 0:25, in qualitative
agreement with this theory.
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FIG. 2. (a) For a thin (d � 10 nm) dielectric layer with "d � 3
embedded in silver, dispersion relation of SPPs is displayed of as
dependence of frequency @! on the real part of wave vector.
(b) For the same system, dependence of Imk on Rek. For both
panels, the solid lines pertain to the antisymmetric SPP mode,
and the dashed lines denote the symmetric SPP mode.

PRL 98, 177404 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
27 APRIL 2007

177404-4


