Chaotic dynamics in terahertz-driven semiconductors with negative effective mass

J. C. Cao*  
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, People’s Republic of China and Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6

H. C. Liu
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6

X. L. Lei
Department of Applied Physics, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai, 200030, People’s Republic of China and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of China

A. G. U. Perera
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303  
(Received 11 May 2000; revised manuscript received 22 September 2000; published 26 February 2001)

We report on a detailed theoretical study of current self-oscillations and chaotic dynamics in negative effective mass (NEM) $p^+pp^+$ diodes driven by dc and ac electric fields with a terahertz (THz) frequency. An ‘‘N-shaped’’ velocity-field relation is yielded by using the nonparabolic balance-equation theory with a realistic treatment of carrier scatterings by impurity, acoustic phonon, and optic phonon. The dependence of the self-oscillating mode and its frequency on the dc bias, doping concentration, and lattice temperature is examined in detail. The THz-driven $p^+pp^+$ NEM diodes can produce a cooperative nonlinear oscillatory mode which leads to very complicated chaotic dynamics with the dc bias, ac amplitude, and ac frequency as the controlling parameters. The transitions between the periodic and chaotic states are carefully studied by different chaos-detecting methods, such as phase portrait, Poincaré bifurcation diagram, power spectrum, and first return map. The resulting power spectrum bifurcation diagram displays a very complicated mosaic structure with a self-similar emergence of high-order mixing frequencies.

DOI: 10.1103/PhysRevB.63.115308  
PACS number(s): 73.61.Ey, 73.50.Fq, 85.30.Fg, 85.30.De

I. INTRODUCTION

Nonlinear dynamics in different kinds of semiconductor systems with dc and ac driving voltage has been a recent focus of many experimental1–9 and theoretical10–21 investigations. When a miniband superlattice13,14,19,20 or a sequential resonant tunneling superlattice4,5,10–12 is driven by dc and ac fields with GHz to THz frequency the systems can produce an alternative mode of operation and lead to the transition between the periodic state and various types of deterministic spatiotemporal chaos. Recently, by involving novel electromagnetic radiation sources and coupling techniques the effect of THz radiation field on the nonlinear current-voltage characteristics of superlattices has been investigated experimentally,22 including multiphoton-assisted resonant tunneling,1 negative absolute resistance,2 and Shapiro steps on dc current-voltage curve.3 Meanwhile, the nonlinear dynamics of a two-dimensional electron field is studied in some detail.8,9,17 Asmar et al.8,9 carried out a series of transport and optical measurements in n-type GaAs/AlGaAs heterojunctions and quantum wells (QW) under an intense THz irradiation. They found that the dc conductivity of these two-dimensional systems is strongly affected by the intense THz irradiation, and its behavior is sensitively dependent on the frequency and the amplitude of the radiation. Lei et al.17 performed theoretical calculations of dc conductivity of n-QW’s when the THz field is intense enough to suppress the formation of high-field domain. Basically, the above-mentioned phenomena in superlattices and QW’s are related to the negative differential velocity (NDV) characteristics, which makes these systems display self-oscillating behavior. Self-oscillating systems that are forced by an external oscillating signal represent an important class of nonlinear dynamical systems.

Recently, by abstracting a NEM dispersion relation from a p-QW subband,23,24 several model calculations of carrier ballistic transport in $p^+pp^+$ diodes have been performed, by using the collisionless Boltzmann equation25–30 and the balance-equation theory.21 Calculations21 indicated that the steady-state velocity-field curve of carriers with a NEM dispersion supports an ‘‘N-shaped’’ section, which is quite different from the two-valley result of electron transport in bulk GaAs. Under a certain range of doping concentrations and bias fields, undamped current self-oscillation related to the formation of electric-field domain appears in the NEM $p^+pp^+$ diode. The oscillating frequency lies in the THz range for the NEM $p^+pp^+$ diodes having submicrometer p-base lengths. The p-base NEM dispersion is the origin of current oscillations in the present NEM $p^+pp^+$ diodes. In contrast, the current oscillation in miniband superlattice is due to the negative effective mass of Bloch electrons in the miniband. It is well known that, when electrons within the
miniband are accelerated beyond the Brillouin zone boundary, their velocity becomes negative. In the absence of scattering, the electron wave packet then oscillates with the Bloch frequency. The chaotic dynamics in superlattices driven by periodic signals have been investigated in great detail.\cite{4,5,10,14,19,20}

However, the study of chaotic dynamics in the present NEM $p^+pp^+$ diode is still lacking so far. This article presents a careful study of nonlinear dynamics of the NEM $p^+pp^+$ diode driven by a THz signal and a dc bias at which the diode exhibits self-sustaining current oscillation. The velocity-field relation of the NEM semiconductor is calculated by the balance-equation theory, which accurately includes different scattering contributions by impurity, acoustic phonon, and optic phonon. The resulting “N-shaped” velocity-field relation (or carrier mobility) is then fed into the transient drift-diffusion (DD) model to study spatiotemporal characteristics of the NEM $p^+pp^+$ diodes. We have carefully calculated the dependence of self-oscillating behaviors on the applied voltage, doping concentration, and lattice temperature, and studied chaotic dynamics in the NEM $p^+pp^+$ diodes with the dc bias, ac amplitude, and ac frequency as the controlling parameters. The transitions between the periodic and chaotic states are extensively investigated by different chaos-detecting methods, such as phase portrait, Poincaré bifurcation diagram, power spectrum, and first return map. The power spectrum bifurcation diagram has a very complicated mosaic scenario with a self-similar emergence of high-order mixing frequencies, when the NEM $p^+pp^+$ diode is driven by a dc and an ac voltage with a frequency of the inverse golden mean ratio times the self-oscillating frequency.\cite{31}

The remainder of this article is organized as follows. In Sec. II, we describe the nonparabolic balance equations for carrier transport in semiconductors and calculate the steady-state velocity-field relation of carriers with a NEM at different lattice temperatures. In Sec. III we calculate the dependence of self-oscillating current and its frequency on the applied voltage, doping concentration, and lattice temperature in NEM $p^+pp^+$ diodes. In Sec. IV, the spatiotemporal modes and chaotic dynamics of the diodes subject to both dc and ac voltages are extensively studied by different methods for detecting chaotic characteristics of a time series. Finally, in Sec. V we draw the main conclusions of this work.

II. “N-SHAPED” VELOCITY-FIELD RELATION OF CARRIERS WITH NEM

As shown in the previous model calculations,\cite{25,26,27,28,29,21} we focus our attention on the NEM section of semiconductor dispersion by using the approximate wave-vector energy relation as follows:

$$
\varepsilon(k) = \frac{\hbar^2 k^2}{2m_e} - \sqrt{\frac{\hbar^2 k^2}{2M_e} - \varepsilon_0} \sqrt{\varepsilon_0^2 + 4\Delta^2 + C},
$$

where $k=(k_x,k_y,k_z)$ is a three-dimensional wave vector, $\varepsilon_1(k) = \hbar^2 k^2/(2m)$, $\varepsilon_2(k) = \hbar^2 k^2/(2M) + \varepsilon_0$, $m$ and $M$ are two effective masses, and $\Delta$ and $\varepsilon_0$ are two energy-band-related energies. We denote $C = \sqrt{\varepsilon_0^2 + 4\Delta^2 - \varepsilon_0}$, $m_e = Mm/(M+m)$, and $M_e = Mm/(M-m)$. When $M \rightarrow m$, the dispersion (1) reduces to a parabolic band. According to the balance-equation theory, when a uniform electric field $E$ is applied to the semiconductor with an energy-wave-vector relation $\varepsilon(k)$, the transport state of the carriers can be described by the average center-of-mass momentum $p_d$ and the relative carrier temperature $T_c$, which are determined by the steady-state effective acceleration- and energy-balance equations,\cite{31,32}

$$
0 = enE \varepsilon(K) + A_{ei} + A_{ep},
$$

$$
0 = enE \cdot \nu_d - W_{ep}.
$$

In Eqs. (2) and (3), $e$ is the carrier charge, and

$$
n = \frac{1}{4\pi^3} \int d^3k f((\varepsilon(k) - \mu)/k_BT_c),
$$

is the carrier density, $\mu_f = (\\nabla \varepsilon(k))$ is the average velocity, $e = (\varepsilon'(k))$ is the average energy, and $K = (\\nabla \varepsilon'(k))$ is the ensemble-averaged inverse-effective-mass tensor of the carriers. Here $(\cdot \cdot \cdot)$ stands for the weighted integral over a Brillouin zone in $k$ space: $(\cdot \cdot \cdot) = \int (4\pi^2) d^3k f((\varepsilon(k) - p_d) - \mu)/k_BT_c , \cdots$, with $f(x) = [1/(\exp(x) + 1)]$ the Fermi distribution function and $\mu$ the chemical potential. The frictional acceleration $A_{ei}$, $A_{ep}$ (due to impurity and phonon scatterings) and the energy-loss rate $W_{ep}$ (due to phonon scattering) share the same expressions as those given in Refs. 32 and 33.

They are completely determined by $p_d$, $T_c$, and $\mu$ (or $n$) for a semiconductor system with known impurity distributions, phonon modes, electron-impurity potentials, and electron-phonon coupling matrix elements. The explicit expressions of acceleration and energy-loss rate can be found in Ref. 21.

From Eqs. (2) and (3) we have calculated the steady-state carrier drift velocities as a function of the electric field $E$. Hole-impurity, hole-acoustic-phonon (deformation and piezoelectric), hole-polar-optic-phonon, and hole-nonpolar-optic-phonon are taken into account in the calculations. Parameters appearing in the dispersion (1) are $m = 0.085m_0$ ($m_0$ is the free electron mass), $M = 0.54m_0$, $\varepsilon_0 = 0.1$ eV, and $\Delta = 0.02$ eV. They are the same as those used in Refs. 26 and 21. The dispersion diagram calculated from Eq. (1) is shown in Fig. 1(a). The device structure considered here is a $p^+pp^+$ diode, which is shown in the inset of Fig. 1(a). All other material constants used in calculations are typical values of bulk GaAs: lattice density $5.31$ g/cm$^3$, transverse sound velocity $v_{st} = 2.48 \times 10^3$ m/s, longitudinal sound velocity $v_{sl} = 5.29 \times 10^3$ m/s, LO phonon energy $\Omega_{LO} = 35.4$ meV, low-frequency dielectric constant $\kappa_d = 12.9$, optical dielectric constant $\kappa_a = 10.8$, valence-band deformation potential $Z = 8.5$ eV, and piezoelectric constant $e_{14} = 1.41 \times 10^9$ V/m. From these given material parameters and given carrier density, $A_{ei}$, $A_{ep}$, and $W_{ep}$ are completely determined as functions of $p_d$ and $T_c$. They are in forms of multilayer integrations and have been numerically calculated by the ten-point Gauss integration method.
in which \( v_d \) is in units of \( 10^7 \) cm/s and \( E \) is in kV/cm. The values of \( C_i \) \((i=1,2,\ldots,8)\) for \( T = 77, 145, 180, \) and \( 220 \) K are listed in Table I. In the whole range of electric fields considered here, a good agreement is observed from Fig. 1(b) between the analytical results (solid lines) by Eq. (5) and the balance-equation calculations (solid symbols).

### III. SELF-SUSTAINING OSCILLATIONS UNDER dc BIAS

In this section, we carry out calculations of current oscillations in \( p^+pp^+ \) diodes [see the inset of Fig. 1(a)] with a NEM \( p \)-base under a dc bias by using the transient drift-diffusion equations and the Poisson equation. The mobility of carriers in \( p \) base is given by Eq. (5),

\[
\mu_e = v_d/E = C_1 \left[ 1 - C_2 (E^2 + C_3) / (E^2 + C_4 E + C_5) \right] + C_6 \arctan(C_7 E - C_8),
\]

which is shown in the inset of Fig. 1(b). The numerical scheme to solve these equations has been described in some detail in Ref. 21. Electrostatic potential \( \phi(x,t) \) and hole density \( n(x,t) \) are the time- and space-dependent fundamental unknown variables that we need to solve. All other quantities, such as electric field \( E(x,t) = -\partial \phi / \partial x \), hole velocity \( v_d \), and conduction hole current density \( j(x,t) = e n v_d \), can be obtained from the fundamental variables. The total current density is the sum of the conduction current density and the displacement current density,

\[
J(t) = j(x,t) + \kappa \epsilon_0 \frac{\partial E(x,t)}{\partial t},
\]

which is a function of time \( t \) only. In Eq. (6), \( \kappa \) is the dielectric constant of the \( p \)-base material. For the \( p^+pp^+ \) structure subjected to dc and ac voltages in the form

\[
V(t) = V_{ac} + V_{dc} \sin(2 \pi f_{ac} t),
\]

the boundary conditions for \( \phi(x,t) \) and \( n(x,t) \) are as follows:

\[
\phi(x_L,t) = 0, \quad \phi(x_R,t) = V(t),
\]

\[
n(x_L,t) = N_d(x_L), \quad n(x_R,t) = N_d(x_R),
\]

in which \( V_{ac} \) and \( f_{ac} \) are, respectively, the amplitude and frequency of ac voltage, \( x_L \) and \( x_R \) stand for the position of

---

**TABLE I.** The values of \( C_i \) \((i=1,2,\ldots,8)\) appearing in Eq. (5) at lattice temperatures \( T = 77, 145, 180, \) and \( 220 \) K, respectively.

<table>
<thead>
<tr>
<th>( T )</th>
<th>( 77 ) K</th>
<th>( 145 ) K</th>
<th>( 180 ) K</th>
<th>( 220 ) K</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C_1 )</td>
<td>1.31350</td>
<td>1.21857</td>
<td>1.28112</td>
<td>0.84975</td>
</tr>
<tr>
<td>( C_2 )</td>
<td>0.99616</td>
<td>0.98858</td>
<td>1.00000</td>
<td>0.98499</td>
</tr>
<tr>
<td>( C_3 )</td>
<td>5.85828</td>
<td>15.23651</td>
<td>13.27141</td>
<td>18.43012</td>
</tr>
<tr>
<td>( C_4 )</td>
<td>1.00716</td>
<td>0.69681</td>
<td>1.09615</td>
<td>0.97544</td>
</tr>
<tr>
<td>( C_5 )</td>
<td>15.30504</td>
<td>27.16247</td>
<td>19.82886</td>
<td>31.08370</td>
</tr>
<tr>
<td>( C_6 )</td>
<td>0.01087</td>
<td>0.00858</td>
<td>0.00984</td>
<td>0.00869</td>
</tr>
<tr>
<td>( C_7 )</td>
<td>0.40437</td>
<td>0.44017</td>
<td>0.25371</td>
<td>0.45676</td>
</tr>
<tr>
<td>( C_8 )</td>
<td>12.78973</td>
<td>14.63324</td>
<td>8.65393</td>
<td>16.50578</td>
</tr>
</tbody>
</table>

---

**FIG. 1.** (a) A model dispersion calculated from Eq. (1). The parameters are \( m = 0.085m_0 \) \((m_0 \) is the free electron mass), \( M = 0.54m_0 \), \( \epsilon_0 = 0.1 \) eV, and \( \Delta = 0.02 \) eV. \( a \) is the lattice constant. The inset is the \( p^+pp^+ \) device structure considered here. (b) Calculated carrier drift velocity \( v_d \) (symbols) as a function of the steady-state electric field \( E \) at carrier density \( n = 1.0 \times 10^{17} \) cm\(^{-3} \) and different lattice temperatures \( T = 77, 145, 180, \) and \( 220 \) K, respectively. The lines are the analytical fits by Eq. (5). The inset is the field-dependent carrier mobility in unit of m\(^2\)/Vs.
the left and right $p^+$ contact boundaries, and $N_d(x)$ is the doping concentration. The initial values $\phi(x,0)$ and $n(x,0)$ are set to be the thermal-equilibrium values at zero bias condition.

In the calculations, the contact doping concentration is set to be $N_d(x_L)=N_d(x_R)=2 \times 10^{18}$ cm$^{-3}$. The length of $p$-base is defined as $l$, and each $p^-$-base length is $l/2$. For all calculations, we set $p$-base length $l=0.5$ $\mu$m. We exponentially smooth the doping concentration near the $p^+p$ and $pp^+$ junctions for the sake of numerical stability. To mimic a realistic situation, we assume that there is a slight doping fluctuation near the cathode end of the diode, which is the origin of the formation of electric field domain. For a NDV system, any small fluctuation of internal inhomogeneities (doping or field) may give rise to the formation of a traveling high-field domain due to the spatial amplification and temporal growth, so the existence of a NDV section may cause a global current instability in realistic devices under certain conditions. We apply the standard finite-difference technique to solve the DD model. It is observed that, for the $p^-pp^+$ NEM diodes with a $p$-base length $l=0.5$ $\mu$m simulated here, 300 space meshpoints and $1.5 \times 10^{-3}$ ps time step exhibit a good numerical accuracy and stability. In general, no more than five Newton iterations usually reach convergence for every time step at all applied voltages within a maximum relative error of $10^{-4}$ for the variables $\phi(x,t)$ and $n(x,t)$.

We now consider the pure dc case ($V_{ac}=0$). When the applied dc bias $V_{dc}$ is larger than a critical value the self-sustaining periodic current oscillations show up with a frequency $f_s$. We define the time-averaged current density $J_{av}$ by integrating $J(t)$ over one oscillating period $T_s=(1/f_s)$,

$$J_{av} = \frac{1}{T_s} \int_{t_1}^{t_1+T_s} J(t)\,dt,$$  

in which $t_1$ is a time after the transient response dies out. Calculations indicate that, for given $V_{dc}$ biased in the NDV regime, the carrier concentration has a strong effect on the modes of electric field domains. Undamped time-periodic current self-oscillations show up when the doping density $N_d$ is between two critical values $N_d^*$ and $N_d^{**}$. The self-oscillating frequency depends on the doping concentrations. Below $N_d^*$ and above $N_d^{**}$ the currents exhibit no oscillations after a few picosecond transient responses. On the other hand, for a given doping concentration $N_d$, there are two critical values $V_{dc}^{**}$ and $V_{dc}^*$. Only when $V_{dc}^{**} < V_{dc} < V_{dc}^{**}$, the diode is biased in the NDV regime, the self-oscillation shows up. In Fig. 2 we show the temporal evolution of the current $J(t)$ for the $p^-pp^+$ diode with the doping concentration $N_d=6.6 \times 10^{17}$ cm$^{-3}$ at different dc biases $V_{dc}=0.235$, 0.25, 0.27, 0.3, 0.32, 0.6, 0.98, and 1.14 V, respectively. In the whole article, the $p$-region length is set to be $l=0.5$ $\mu$m.

and different doping concentrations $N_d=0.6$, 1.0, 1.8, 3.0, 4.8, and $6.6 \times 10^{17}$ cm$^{-3}$, respectively. All solid points correspond to the current densities when static electric-field domains are formed, i.e., after the transient dies out, the current approaches a constant. The open points stand for the time-averaged current densities $J_{av}$ defined by Eq. (10) when dynamic electric-field domains are formed. These dynamic dc voltage bands expand with increasing doping concentration. When $N_d=0.6 \times 10^{17}$ cm$^{-3}$ the dynamic dc voltage band is from 0.295 to 1.05 V, and when $N_d=6.6 \times 10^{17}$ cm$^{-3}$ the dynamic dc band expands to a region from 0.235 to 1.14 V. We also note that, at larger doping concentrations, the dynamic dc voltage band is offset with the static band. When the doping concentration decreases, the dynamic band becomes continuous with the static band.

The dependence of self-oscillating frequencies $f_s$ on $V_{dc}$ is shown in Fig. 4 at $T=77$ K and for different doping concentrations $N_d=0.6$, 1.0, 1.8, 3.0, 4.8, and $6.6 \times 10^{17}$ cm$^{-3}$. The self-oscillating frequencies are between 0.25 and 1.2 THz. For low doping concentrations $N_d=0.6$ and $1.0 \times 10^{17}$ cm$^{-3}$, the critical voltages of transition from
quenched mode to transit-time mode\textsuperscript{18} are about 0.3 and 0.271 V, respectively. In the regions of quenched modes ($V_{dc} < 0.3$ V for $N_a = 0.6 \times 10^{17}$ cm\textsuperscript{-3} and $V_{dc} < 0.271$ V for $N_a = 1.0 \times 10^{17}$ cm\textsuperscript{-3}) the self-oscillating frequencies decrease rapidly with increasing dc bias voltage, while in the regions of transit-time modes ($V_{dc} > 0.3$ V for $N_a = 0.6 \times 10^{17}$ cm\textsuperscript{-3} and $V_{dc} > 0.271$ V for $N_a = 1.0 \times 10^{17}$ cm\textsuperscript{-3}) the frequencies increase with increasing dc voltages. The two kinds of modes can be understood from that, when the dc bias is turned on, electric field domain is created and then it moves toward the anode. Depending on the applied bias, the electric field domain may or may not reach the anode before it disappears. The former case is transit-time mode, while the latter case corresponds to quenched mode. The period of the oscillation is mainly determined by the total traveling time of the accumulation wave across the $p$ base. The formation and traveling of electric field domains in the present $p^+pp^−$ NEM diode are somewhat similar to the domain modes appearing in the well-known Gunn transferred-electron devices,\textsuperscript{34} but their microscopic mechanisms are different. In Gunn devices electrons transfer from the high-mobility lower valley to the low-mobility upper valley, leading to a NDV, while the NDV in the present $p^+pp^−$ diode results from a single band with a NEM section. It is worth noting that in the present “$N$-shape” velocity-field relation there is a positive-differential-velocity section after the NDV region. This property results in an increase of oscillation frequency of the NEM $p^+pp^−$ diode, when compared to Gunn devices.

To have a better insight into the dynamic dc band, in Fig. 5(a) we show the dependence of amplitude $J_{\text{max}}$, time-averaged current density $J_{av}$, static current density $J_{\text{sta}}$, and self-oscillating frequency $f_s$ (right axis) on $V_{dc}$ from 0.1 to 1.3 V at $T = 77$ K and doping concentrations $N_a = 6.6 \times 10^{17}$ cm\textsuperscript{-3}. The corresponding power spectrum (PS) bifurcation diagram is shown in Fig. 5(b) for the dynamic dc band between 0.235 and 1.14 V. The power spec-
Frequency (PS) is calculated by using a fast Fourier transform algorithm. The step of $V_{dc}$ is set to be 1.5 mV. The logarithmic PS's are shown as a density plot, where lighter areas correspond to larger amplitudes of PS. The lowest bright line is the self-oscillating frequency $f_s$, and the upper bright lines respectively correspond to its harmonics $mf_s$ ($m=2,3,\ldots$).

The temperature-dependent time-averaged current-voltage characteristics are also studied and shown in Fig. 6 for a NEM $pp^+$ diode having doping concentration $N_a=1.0 \times 10^{17}$ cm$^{-3}$ at different lattice temperatures $T=77$, 145, 180, and 220 K, respectively. The time-averaged dc current $J_{av}$ decreases with increasing lattice temperature at a given dc voltage, since the average hole velocity decreases with increasing lattice temperature as indicated in Fig. 1. The corresponding self-oscillating frequencies $f_s$ on dc biases are shown in Fig. 7. All the frequencies versus the dc voltages have an obvious transition from quenched mode to transition mode. For the case of $T=77$ K and $N_a=1.0 \times 10^{17}$ cm$^{-3}$, we show in Fig. 8(a) the dependence of amplitude $J_{max}$, time-averaged current densities $J_{av}$, static current density $J_{sta}$, and self-oscillating frequency $f_s$ (right axis) on dc biases from 0.1 to 1.3 V. Calculations of PS’s similar to Fig. 5(b) are carried out and shown in Fig. 8(b) versus dc bias from 0.2694 to 1.1 V. The main difference between Fig. 5(a) and Fig. 8(a) is that the current densities in the latter case are almost continuous between the dynamic dc band and static dc band.

### IV. TRANSITION BETWEEN PERIODIC AND CHAOTIC STATES

In this section, we deal with the NEM $pp^+$ diode driven both by dc and ac voltages. When the NEM diode is subject to a periodic voltage expressed by Eq. (7), a variety of spatiotemporal behaviors have been found, depending on the dc bias $V_{dc}$, ac amplitude $V_{ac}$, and ac frequency $f_{ac}$. First, we consider the ac amplitude $V_{ac}$ as the controlling parameter, while the dc voltage is fixed to $V_{dc}=1$ V, which leads to a self-oscillating frequency $f_s=0.84$ THz for the NEM $pp^+$ diode with a doping concentration $N_a=1.0 \times 10^{17}$ cm$^{-3}$.
The ac frequency is fixed to the inverse golden mean \( G \approx \frac{1}{f_{ac}} \) times the self-oscillating frequency, i.e., \( f_{ac} = \frac{G}{f_0} \approx 1.36 \text{ THz} \). The inverse golden mean ratio is often used in driving nonlinear systems \(^4,^{11,35}\) because it is regarded as the most irrational of all irrational numbers. To clarify the periodic and chaotic regions in controlling parameter space of \( V_{ac} \), we need the help of Poincaré bifurcation diagram. We define Poincaré mapping as follows. Let \( T_{ac} = \frac{1}{f_{ac}} \) be the driving period. We use the current densities at times \( t_m = mT_{ac} \), \( m = 1, 2, 3, \ldots \), (after the transients die out) as the Poincaré mapping for each \( V_{ac} \). We compute \( J_m = J(t_m) \) until the solution becomes periodic within a 10\(^{-4}\) accuracy, and depict all the \( J_m \) as the maps of \( V_{ac} \). If the solution \( J_m \) is aperiodic, we eliminate the first 30 transient points and depict the next 50 points of \( J_m \).

In the calculation, \( V_{ac} \) is changed from 0 to 0.09 V with a step of 0.2 mV. The calculated Poincaré bifurcation diagram is shown in Fig. 9(a), which indicates that there exist 2-, 5-, 7-, 9-, and 12-periodic windows and beyond all the periodic windows the spatiotemporal solutions become chaotic. Over the range of parameter \( V_{ac} \) from 0 to 0.09 V, we have not found any quasiperiodic solution (which can be verified by plotting first return map for each \( V_{ac} \), as discussed in the following). For small ac amplitude \( V_{ac} \leq 0.0362 \text{ V} \) the system behaves chaotically. As \( V_{ac} \) increases, 5-periodic solutions (i.e., the frequency of the solution is 5 times ac driving frequency) span a wider window from \( V_{ac} = 0.0362 \) to 0.0436 V. With increasing \( V_{ac} \) 7-, 9-, and 12-periodic windows are observed, and the widths of the windows become narrower and narrower when the frequency of the solution increases. When \( V_{ac} > 0.0628 \text{ V} \) the solutions become 2-periodic. In Fig. 9(b) we show the corresponding PS bifurcation diagram, where lighter areas correspond to larger amplitudes of PSs. The PS bifurcation diagram clearly displays the transitions between periodic and chaotic states. As \( V_{ac} \) approaches 0.0362 V, the chaotic behavior disappears abruptly and 5-periodic window appears with the frequency spectra consisting of \( m/5 \) \( (m = 1, 2, 3, \ldots) \) times the driving frequency \( f_{ac} \). When \( V_{ac} \) reaches 0.0498 V, the solutions become 7-periodic with the frequency spectra consisting of \( m/7 \) \( (m = 1, 2, 3, \ldots) \) times the driving frequency. Outside of these periodic windows, there seem to be a number of rather narrow chaotic windows. However, the transitions from the chaotic to the periodic windows occur over a very small voltage range and the frequency spectra become smeared out, thus not well resolved in Fig 9(b). The PS bifurcation diagram also clearly shows the coupling of dc bias and ac driving voltage. Near the left and right axes of Fig. 9(b), we have shown the positions of fundamental frequencies.
FIG. 11. Power spectrum bifurcation diagram for $V_{ac}$ from 0.039 to 0.045 V. The parameters are the same as those described in Fig. 10.

More complicated Poincaré and PS bifurcation diagrams are shown in Fig. 10 for another NEM $p^+pp^+$ diode having $N_a=2.0\times10^{17}$ cm$^{-3}$ at $T=77$ K. The dc bias is set to be $V_{dc}=0.75$ V, which leads to a self-oscillating frequency $f_s=0.4778$ THz. The driving frequency is fixed at $f_{ac}=f_s\times G=0.773$ THz. It is shown in Fig. 10 that there are three main periodic windows: 5-periodic, 7-periodic, and 9-periodic. The oscillation alternates behavior between the periodic and chaotic states, resulting in a number of crossings of frequency peak lines. Each frequency branch splits into two or three branches. When the branches cross, they are locked to new periodic states. The periodic windows, however, are very narrow. This alternate transition becomes more and more frequent with increasing driving amplitude before the system finally enters the 2-periodic solution at $V_{ac}=0.0441$ V. To have a clear insight into these transitions, we show in Fig. 11 the high-resolution PS bifurcation diagram for $V_{ac}\in[0.039,0.045]$ V calculated by setting the step of $V_{ac}$ to be 0.02 mV. It is indicated that there are more complicated frequency bifurcations between the periodic and chaotic windows. These frequency cascades have resulted in the complicated mosaic structure, which exhibits a self-similarity of the pattern. In Fig. 12 we have shown the first return maps for six specific ac voltages in Fig. 10: (a) $V_{ac}=0.01$, (b) 0.023, (c) 0.028, (d) 0.035, (e) 0.036, and (f) 0.043 V, respectively. The first return maps are obtained by plotting $J_{m+1}$ as a function of $J_m$, where $m$ is large enough such that the transient state dies out. First return map can often be used in distinguishing the quasiperiodic solution from chaotic solution. The resultant attractors for $m$-periodic solutions are just the $m$ separate points [see Fig. 12(b) and (d)], while the chaotic attractors contain infinite random points (when $m\rightarrow\infty$) forming several separate branches [Fig. 12(f)] or a multilayered structure with varying density of the points on different regions [Fig. 12(a), (c), and (e)]. It is well known that the first return map of a quasiperiodic motion is a closed smooth curve with regular distribution of the points. We have checked the first return maps for each $V_{ac}$ and have not found any closed smooth curve, thus confirming that no quasiperiodic solution exists in the full region of parameter $V_{ac}$ considered here.

Finally, we have studied the response of the NEM $p^+pp^+$ diode system under different driving frequency $f_{ac}$ when fixing $V_{dc}$ and $V_{ac}$. In Fig. 13, we show Poincaré and PS bifurcation diagrams at $T=77$ K, $N_a=2.0\times10^{17}$ cm$^{-3}$, $V_{ac}=0.036$ V, and $V_{dc}=0.75$ V. The self-oscillating frequency is $f_s=0.4778$ THz. We change the driving frequency from $f_{ac}$ to $5.6$ THz. It is shown that there are five main periodic windows indicated in Fig. 13(a) by A: 1-periodic, B: 2-periodic, C: 3-periodic, D: 4-periodic, and E: 5-periodic. These $m$-periodic ($m=1,2,\ldots,5$) windows lie in the driving frequency bands near $f_{ac}/f_s=m$. All the frequency bifurcations in the periodic windows shown in Fig. 13(b) are linear combinations of the driving frequency $f_s$. However, those in the chaotic windows are complicated, which are the com-
ally, the chaotic state attains a higher complexity near the diode. In Fig. 14, we have studied in detail four specific combinations of two independent frequencies \( f_s \) and \( f_{ac} \). Actually, the chaotic state attains a higher complexity near the frequency \( f_{ac}/f_s = G \). The scenario of chaotic and periodic behavior is associated with a characteristic self-similar emergence of high-order mixing frequencies. We expect that there are some sets of parameters which can produce much more complicated PS bifurcation diagrams for the NEM \( p^+pp^+ \) diode. In Fig. 14, we have studied in detail four specific cases of Fig. 13 with the driving frequencies: (a) \( f_{ac} = 0.5 \), (b) 1.0, (c) 2.4, and (d) 2.67 THz, respectively. We have plotted in Fig. 14 the time-dependent currents \( J(t) \) (left), power spectra \( P(f) \) (middle, arbitrary unit), and phase portraits (right). The phase portrait is often used in detecting the chaotic characteristics of a time series. The phase portraits \( J(t) \) vs \( V(t) \) shown in the right of Fig. 14 could be measured experimentally by depicting the current in the external circuit as a function of the instantaneous applied voltage \( V(t) \). Cases (a), (b), and (c) correspond 1-, 2-, and 5-periodic solutions, respectively, and case (d) is in chaotic state. It can be seen that the PSs for the \( m \)-periodic solutions [Figs. 14(a), (b), and (c)] are relatively smooth and just have \( m \) peaks in the frequency band of \( f/f_{ac} \) for \( i = 1 \) \((i = 1, 2, 3, \ldots) \), corresponding the driving frequency \( f_{ac} \) and its harmonics. However, for the chaotic solution [Fig. 14(d)] the PSs become very irregular with a large number of peaks. The phase portraits for the periodic solutions appear as simple closed loops [Figs. 14(a)–14(c)], while the one for the chaotic solution becomes very much folder and irregular [Fig. 14(d)].

V. CONCLUSIONS AND REMARKS

We have theoretically investigated the nonlinear dynamic characteristics of NEM \( p^+pp^+ \) diodes driven by dc and ac voltages in the form of \( V(t) = V_{dc} + V_{ac} \sin(2\pi f_{ac} t) \), based on the nonparabolic balance-equation theory and the transient drift-diffusion model. Depending on the model NEM dispersion given by Eq. (1), we obtain an ‘’N-shaped’’ velocity-field relation, i.e., after the NDV disappears there is a positive differential velocity region. When the NEM \( p^+pp^+ \) diode is subjected to a dc bias in the NDV region, the dynamic electric field domain is formed, leading to a current self-oscillation with a frequency in the THz range. The self-oscillating frequency and time-averaged current are extensively studied for the \( p^+pp^+ \) diodes at different doping concentration and lattice temperature. In contrast, when the NEM \( p^+pp^+ \) diodes are driven both by dc and ac voltages, various types of spatiotemporal behaviors and current-voltage characteristics are found with changing the controlling parameters \( V_{dc}, V_{ac}, \) and \( f_{ac} \). The Poincaré and power spectrum bifurcation diagrams are calculated in order to clarify the transition between the periodic and chaotic windows in the controlling parameter space. When the driving frequency is fixed to the fundamental frequency times the inverse Golden mean ration, the power spectrum bifurcation diagram has a complex mosaic pattern with a self-similar emergence of high-order mixing frequencies. We expect that there are some sets of parameters which may produce much more complicated bifurcation scenarios. The present study may be useful in utilizing and in controlling the possible chaos in p-QW-based modern devices, such as quantum-well infrared photo-detector and parallel asynchronous multispectral focal-plane sensor.

The present investigation focuses on the complex and interesting nonlinear dynamics in semiconductors with an NEM dispersion. It is the first time, to our knowledge, that the theoretical calculations address the power spectrum bifurcation diagrams [see Fig. 10(b)] having such a complicated mosaic structure with a self-similar emergence of high-order mixing frequencies. In principle, it is no problem for us to carry out a study by directly solving hydrodynamic balance equations (HBE’s), as we analyzed spatiotemporal domain and chaos in miniband superlattices. For the sake of simplicity in the present calculations we have used the DD model rather than the HBE. The basic considerations are as follows.

(1) This article addresses a model calculation of field-domain-related carrier transport and nonlinear dynamics in semiconductors having a NEM dispersion. The main purpose is to investigate the nonlinear characteristics of a THz-driven \( p^+pp^+ \) diode if the p-base carrier has a NEM. We assume

FIG. 13. (a) Poincaré bifurcation diagram and (b) power spectrum bifurcation diagram by changing \( f_{ac}/f_s = 0 \) to 5.6 at \( T = 77 \) K, \( N_s = 2.0 \times 10^{17} \) cm\(^{-3} \), \( V_{ac} = 0.036 \) V, \( V_{dc} = 0.75 \) V, and \( f_s = 0.4778 \) THz.
that the NEM dispersion is given by the outside procedure either by an experiment or by an energy-band calculation. The dispersion with a NEM section assumed by Eq. (1) may be abstracted from the hole subband dispersion of p-type QW. So, according to the present calculations, it may be possible to design oscillators having different self-oscillating frequency and mixing mode of current oscillation by changing the QW parameters. It is noted that two designs of the ballistic terahertz (THz) generators based on the NEM hole dispersion have recently been suggested.

The ‘‘N-shaped’’ velocity-field relation is obtained by using the three-dimensional nonparabolic balance-equation theory with a realistic treatment of carrier scatterings by impurity, acoustic phonon, and optic phonons. Band nonparabolicity and quantum-mechanical effects are included in the balance-equation formulas. The resulting velocity-field relation (or mobility) is input into the DD model to investigate the nonlinear dynamical characteristics of a semiconductor with NEM dispersion. The microscopic information about energy dispersion and scattering process therefore enters into the calculation of the macroscopic DD model by the mobility and diffusion coefficient. In fact, the power spectrum scenarios calculated here are very similar to those from experiments for sequential resonant tunneling superlattice, whose velocity-field relation behaves ‘‘N-shaped.’’ In principle, the case of two-dimensional (2D) quantized carriers confined in QW’s can be considered in a similar manner by the well-established 2D balance-equation theory.

(3) The DD model has been successfully used to investigate current instabilities in Gunn-effect-like devices over the past several decades. Recently, the discrete DD model once more showed its validity in studying nonlinear dynamical characteristics of sequential resonant tunneling superlattices and field-domain-related problems induced by a transverse magnetic field in a doped GaAs/AlAs superlattice. From the viewpoint of physics, the formation of field domain is the direct result of inhomogeneous traveling charge density waves. The DD model accounts for the spatial inhomogeneity by the carrier density diffusion term.

(4) One of the feasible realizations of the present theoretical prediction is THz oscillators based on GaAs/AlAs p-QW, in which quantized holes are the dominant carriers. The use of the DD model is partially supported by the fact that hole temperature usually remains close to lattice temperature in contrast to electron temperature, which is hot at high electric fields. It is believable that the hot-carrier effect

FIG. 14. Time-dependent current densities $J(t)$ (left), power spectra $P(f)$ (middle, arbitrary unit), and phase portraits (right) at four specific ac frequencies $f_{ac}=0.5$, 1, 2.4, and 2.67 THz for the NEM $p^+pp^+$ diode described in Fig. 13.
We have calculated that the ratio $T_e/T$ is usually greater than 120. Thus, varying device parameters, we therefore select the DD model for its computational speed and to do more extensive examinations by using a fast Fourier transform algorithm. In order to save computing time and to do more extensive examinations by varying device parameters, we therefore select the DD model for the present computation intensive calculations. The HBE's are much more sophisticated and time consuming than the DD model. As further work, we may use HBE's to study the same problem and find the differences and connections between the two models.

**Acknowledgments**

This work was partially supported by the Special Funds for Major State Basic Research Project No. G20000683, the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and the Shanghai Foundation for Research and Development of Applied Materials.

---


*X. L. Lei, Phys. Rev. B 59, 2199 (1999).*


*X. L. Lei, H. C. Liu, and X. L. Lei, J. Appl. Phys. 87, 2867 (2000).*


*X. L. Lei, J. C. Cao, and B. Dong, J. Appl. Phys. 80, 1504 (1996).*

*J. B. Gunn, Solid State Commun. 1, 88 (1963).*


*H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, IEEE J. Quantum Electron. 32, 1024 (1996).*


*H. C. Liu, in *Intersubband Transitions in Quantum Wells: Physics and Device Applications I*, edited by H. C. Liu and F. Ca-


