Reduced Dark Current With a Specific Detectivity Advantage in Extended Threshold Wavelength Infrared Detector

Article · May 2019
DOI: 10.1109/LSENS.2019.2915016

6 authors, including:

Divya Somvanshi
Technion - Israel Institute of Technology
29 PUBLICATIONS 170 CITATIONS

Dilip Chauhan
Georgia State University
10 PUBLICATIONS 20 CITATIONS

A. G. U. Perera
Georgia State University
323 PUBLICATIONS 3,331 CITATIONS

L. H. Li
University of Leeds
427 PUBLICATIONS 4,460 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Melanoma and Lymphoma View project
- Self-mixing interferometry using THz QCLs View project

All content following this page was uploaded by Divya Somvanshi on 26 May 2019.

The user has requested enhancement of the downloaded file.
Electromagnetic wave sensors

Reduced Dark Current With a Specific Detectivity Advantage in Extended Threshold Wavelength Infrared Detector

Divya Somvanshi1,2,*, Dilip Chauhan1, A. G. Unil Perera1,*, Li Chen3, and Edmund H. Linfield1

1Center for Nano-Optics, Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 USA
2The Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata 700032, India
3School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

*Member, IEEE
**Fellow, IEEE

Manuscript received April 12, 2019; accepted April 30, 2019. Date of publication May 6, 2019; date of current version May 22, 2019.

Abstract—Reduced dark current leading to a specific detectivity (D*) advantage over conventional detectors for extended threshold wavelength (ET) detectors are reported in this article. For an infrared (IR) detector with a graded injector barrier and barrier energy offset, the measured dark current was found to agree well with theoretical fits obtained from a 3-D carrier drift model using the designed value of \(\Delta = 0.40 \text{ eV} (\lambda_t = 3.1 \text{ } \mu\text{m}) \) (where \(\Delta = 1.24/\lambda_t \) is the internal work function and \(\lambda_t \) is the corresponding threshold wavelength), whereas the effective photoresponse threshold wavelength determined from the spectral response measurements corresponds to 13.7 \(\mu\text{m} \) at 50 K. However, for the conventional detectors, both the dark current and photoresponse threshold agree very well with the designed value of \(\Delta \). Comparing threshold wavelengths of an ET detector and a conventional detector, an advantage in \(D^* \) is observed for ET detectors due to the strong reduction in dark current. Using this idea, standard threshold semiconductor detectors could be designed to operate as long wavelength detectors with a higher value of detectivity and dark current (corresponding to the original short-wavelength threshold).

Index Terms—Electromagnetic wave sensors, dark current, detectivity, GaAs/AlGaAs heterostructures, infrared (IR) photodetectors, optoelectronic sensors.

I. INTRODUCTION

Dark current is an unavoidable fact in any photoconductive detector. A common technique to reduce the dark current is to lower the operating temperature, making the detector operation costlier and cumbersome. Therefore, reducing the dark current without cooling will be an advantage, especially for longer wavelength detectors for next-generation optoelectronic devices.

In general, the threshold wavelength (\(\lambda_t \)) of a conventional detector is determined by the relation [1]–[3] \(\lambda_t = 1.24/\Delta \), where \(\Delta \) is the internal work function associated with growth, design, and also with the dark current [5]. The internal work function is defined as the energy difference between the valence band edge of the barrier bottom and the Fermi level of emitter [3]. However, in an IR detector with graded barrier and a barrier energy offset (\(\delta E_v \)) [3], [6], i.e., extended threshold wavelength (ET) detector, the dark current depends upon \(\Delta \), while photoresponse threshold wavelength from the spectral response (\(\lambda_{\text{eff}} \)) is governed by an effective work function, i.e., \(\Delta' = 1.24/\lambda_{\text{eff}} \) (\(\Delta' \ll \Delta \)), where \(\lambda_{\text{eff}} \) is beyond the standard expected limit set by \(\lambda_t \) [3], [7]–[9]. Recently, for an ET detector, the measured dark current was found to agree well with the designed value of \(\Delta = 0.40 \text{ eV} (3.1 \mu\text{m}) \), whereas the experimental spectral photoresponse showed [5] extended threshold wavelengths (\(\lambda_{\text{eff}} \)) of 68, 45, and 60 \(\mu\text{m} \) at positive, zero, and negative voltage biases, respectively, at temperature 5.3 K. An ET detector consists of p-GaAs/Al\(_{x}\)Ga\(_{1-x}\)As heterostructure with an absorber/emitter (p-type GaAs) sandwiched between high energy undoped Al\(_{1-x}\)Ga\(_{x}\)As graded barrier and low energy undoped Al\(_{x}\)Ga\(_{1-x}\)As constant barrier, the energy difference between the barriers is referred to as the barrier energy offset (\(\delta E_v \)). The detection mechanism involves free carrier absorption in the emitter layer, followed by the internal photoemission of photoexcited carriers across the junction and then collection across the barrier. The model used to explain the observation of \(\lambda_{\text{eff}} \) in ET detectors is based on the hot carrier effects [10], [11], as reported by Somvanshi et al. [12]. The interactions of hot carriers in doped GaAs layers were extensively studied in the past experimentally, as well as theoretically [13], [14].

Nowadays, there has been an increased interest in using hot-carrier driven effects for various photodetection and light-harvesting applications [15], [16]. Therefore, the development of ET detectors based on hot-carrier effects, which overcome the restriction imposed on \(\lambda_t \) by \(\Delta \) of vital importance. However, for practical applications, to provide an advantage over the conventional detector, an ET detector should have a reduced dark current and also specific detectivity (\(D^* \)) that is comparable or better than the conventional detector. This article demonstrates that the ET detector with reduced dark current, giving a \(D^* \) advantage over the conventional detector provides a foundation for the future IR detector applications.

II. EXPERIMENTAL DETAILS

A set of samples consisting of conventional detectors named SP1, SP2, HE0204 and an ET detector, i.e., 15SP3 were studied. The fabrication and structural details of conventional detectors are shown in Fig. 1(a) and reported in the literature in detail [4], [7], [17]. The ET...
dark current of detector (M) of 13.7 μm threshold using 3-D drift model.

Fig. 2. Experimental (symbol) and dark current curves fitted (red solid line) for the detectors HE0204, SP1, and SP2. In addition, simulated dark current curve for a modeled hypothetical detector (**M) of 13.7 μm.

Table 1. Structural Details for Listed IR Detectors: Aluminum Mole Fractions (X1, X2, X3, X4), Barrier Energy Offset (δEe), Activation Energy from the Dark Current Fitting (Δ), Activation Energy from Experimental Photoresponse (Δ′), and References From Where Data Have Been Taken.

Table:

<table>
<thead>
<tr>
<th>Sample</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>δEe (eV)</th>
<th>Δ (eV)</th>
<th>Δ′ (eV)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0</td>
<td>0.154</td>
<td>0.144</td>
<td>[1]</td>
</tr>
<tr>
<td>SP2</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0</td>
<td>0.211</td>
<td>0.190</td>
<td>[1]</td>
</tr>
<tr>
<td>HE0204</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0</td>
<td>0.077</td>
<td>0.077</td>
<td>[4]</td>
</tr>
<tr>
<td>15SP3</td>
<td>0.45</td>
<td>0.75</td>
<td>0.39</td>
<td>0.39</td>
<td>0.19</td>
<td>0.40</td>
<td>0.091</td>
<td>[5]</td>
</tr>
<tr>
<td>M</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.091</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In general, the dark current of the conventional detector is described by a 3-D carrier drift model as [2], [5]

\[I_{\text{dark}} = 2e\alpha F \left(\frac{m^*k_B T}{2\pi \hbar^2} \right)^{3/2} \exp \left(-\frac{\Delta - \alpha F}{k_B T} \right) \]

where \(A \) is the electrically active area of the detector, \(e \) is the electronic charge, \(\Delta \) is the standard activation energy, \(\alpha(F) \) is the carrier drift velocity as a function of electric field, \(m^* \) is the effective mass, \(k_B \) is Boltzmann’s constant, \(T \) is temperature, \(h \) is the reduced Planck’s constant, and \(\alpha \) is a fitting parameter that determines effective barrier lowering [2] due to the applied electric field. From (1), it is clear that for a given value of the electric field, \(I_{\text{dark}} \propto T^{3/2} \exp(-\Delta/kT) \).

Recently, a theoretical model for dark current fitting was reported [5], where dark current is fitted by \(I_{\text{dark}} \) using 3-D carrier drift model. On the basis of that theoretical model [5], the experimental dark current of detectors SP1, SP2, and HE0204 were fitted using (1), as shown in Fig. 2. The fitted dark current (solid red line) and the experimentally measured dark current (symbols) are showing excellent agreement.

The photoresponse spectra for listed samples were already published previously by our group as reported in [1], [4], [5], and [7], which have \(\lambda_e(\Delta) \) of 6.0 μm (0.20 eV) for SP2 [1], 8.2 μm (0.50 eV) for SP1 [1], and 16.1 μm (0.077 eV) for HE0204 [4], respectively, which agree very well with \(\Delta \) used for dark current model. On the basis of the 3-D dark current model, the dark current of a hypothetical conventional detector (M) for \(\Delta = 0.091 \) eV is also simulated; the used parameters for simulation are listed in Table I. The simulated dark current for a conventional modeled detector (labeled as M) of \(\Delta = 0.091 \) eV (13.7 μm) is also shown by the dotted (**M) green line, as shown in Fig. 2. The modeled detector has a reasonable dark current (lower
than 16.1 μm and much higher than 7.8 μm detectors) for a 13.7 μm detector. These agreements clearly indicate that the 3-D dark current model is a reasonable model to obtain the dark current of detectors for a given value of Δ.

Now, to demonstrate the dark current advantage in ET detector (15SP3) over the conventional detector, the experimental dark current of 15SP3, HE0204, and modeled (M) detector are compared at 50 K, as shown in Fig. 3(a). The measured dark current of detectors HE0204 and 15SP3 are fitted using (1), as shown in Fig. 3(a), where the solid lines represent the theoretical fits based on the 3-D drift model. The Δ values used for dark current fitting for HE0204 is Δ = 0.091 eV (λ_t = 13.7 μm). Clearly, the modeled detector has a higher dark current compared to the ET detector with the same value of λ_eff = 16.1 μm. (b) Photoresponse spectra of HE0204 with λ_t = λ_eff = 16.1 μm (Δ’ = 0.077 eV) and dark current also fitted with Δ’ = 0.077 eV; however, for 15SP3, Δ(λ_eff) is 0.091 eV (13.7 μm), whereas dark current is fitted with Δ = 0.40 eV corresponding to λ_t = 3.1 μm.

Fig. 3. (a) Comparison of dark current for detectors HE0204 and 15SP3. A clear difference is seen in dark current for the two detectors for close value of threshold wavelength. A dotted (green) line shows a modeled dark current of a conventional detector with Δ = 0.091 eV (λ_t = 13.7 μm). Clearly, the modeled detector has a higher dark current compared to the ET detector with the same value of λ_eff = 13.7 μm. (b) Photoresponse spectra of HE0204 with λ_t = λ_eff = 16.1 μm (Δ’ = 0.077 eV) and dark current also fitted with Δ’ = 0.077 eV; however, for 15SP3, Δ(λ_eff) is 0.091 eV (13.7 μm), whereas dark current is fitted with Δ = 0.40 eV corresponding to λ_t = 3.1 μm.

Fig. 4. Comparison of D^* for HE0204 and 15SP3 at 50 K; the FWHM value of D^* is also included and denoted by dashed lines.

The D^* for both detectors, i.e., 15SP3 and HE0204 under the dark condition at zero bias is calculated by using the following relation:

$$D^* = \frac{R_i A}{4k_B T}$$

where R is the spectral responsivity, k_B is the Boltzmann constant, T is the temperature, A (cm^2) is the electrically active area of the detector, and R/A is the resistance-area product at zero bias. The calculated value of D^* for HE0204 and 15SP3 are shown in Fig. 4, and for more clarity of results, the full width at half maximum (FWHM) value of D^* is also included in Fig. 4. It is observed that D^* for peak as well as FWHM wavelength, range is higher in 15SP3 as compared to the
HE0204. Moreover, the FWHM value of 15SP3 is even higher than that of the peak value of D* at 11.6 μm of HE0204. All values are listed in Table II.

It may be noted here in this article that both HE0204 and 15SP3 have a difference of threshold wavelength (16.1 – 13.7 μm); however, there is an order of magnitude difference in the responsivity (i.e., HE0204 is of the order of mA/W, and 15SP3 is of the order of μA/W). Therefore, even for the same threshold wavelengths, a similar order of difference in order of responsivity is expected. Thus, the dark current advantage is stronger in ET detectors than the responsivity difference, giving rise to a better D*. Although the responsivity for the conventional device (HE0204) is higher, however, due to the reduced dark current, D* is higher for ET detector (15SP3). This confirms the proposed idea of longer threshold wavelength detector with a reduced dark current and D* advantage in ET detector as compared to a conventional detector.

IV. CONCLUSION

In conclusion, a conventional detector HE0204 have dark current and photoresponse threshold corresponding to designed Δ = 0.077 eV, which gives λt = 16.1 μm at 50 K. However, as proposed ET detector 15SP3 has a dark current designed λt = 3.1 μm, whereas λoff corresponding to 13.7 μm at 50 K. This dark current advantage leads to the higher value of D* = 1.5 × 10^7 Jones for 15SP3 over HE0204 = 1.1 × 10^3 Jones, even though the responsivity of 15SP3 is much lower as compared to HE0204. On the basis of the results, it can be concluded that the ET detector can be designed to have a longer threshold wavelength with a reduced dark current and D* advantage. This idea can be further employed to reduce the energy consumption of most of the electronic components, leading to large scale savings, by reducing unwanted (heat) energy usage.

ACKNOWLEDGMENT

This work was supported, in part, by the U.S. Army Research Office under Grant W911 NF-15-1-0018 and in part by the European Community’s Seventh Framework Programme (FP7) under Grant 247375 “TOSCA.”

REFERENCES

