Study of infrared photodetectors with wavelength extension mechanism

D. Chauhana, A.G.U. Pereraa,⁎, L.H. Lib, L. Chenb, E.H. Linfieldb

a Center for Nano-Optics (CeNO), Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
b School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

A R T I C L E I N F O

Keywords:
Infrared photodetector
Extended wavelength photoresponse
GaAs/AlGaAs heterostructure

A B S T R A C T

The III-V semiconductor heterostructure-based photodetectors have been studied extensively for infrared detection, from near-infrared (NIR) to far-infrared (FIR) region. Due to the mature material system, GaAs/Al\textsubscript{1-x}Ga\textsubscript{x}As heterostructures are attractive options for development of infrared detectors. The conventional rule of photoresponse mechanism, \(\lambda = h/\Delta \), determines the wavelength threshold of the material, or the interfacial energy gap of the heterostructure. In recent studies on the p-GaAs/Al\textsubscript{1-x}Ga\textsubscript{x}As heterostructure-based infrared photodetectors, spectral threshold limit due to \(\Delta \) has been overcome owing to a detection mechanism arising from the hot-carrier effect driven extended wavelength photoresponse mechanism. It has been experimentally observed that a detector with a conventional spectral threshold of \(\sim 3.1 \) \(\mu \)m shows an extended wavelength threshold of up to \(\sim 68 \) \(\mu \)m. An important advantage of the wavelength extension mechanism is the lower dark current, which is determined by the designed barrier energy \(\Delta \). Dark current fittings obtained from a 3D carrier drift model closely agree with experimentally measured dark current. A barrier energy offset \((\Delta E) \) between Al\textsubscript{1-x}Ga\textsubscript{x}As barriers is found to be necessary for the spectral extension mechanism.

1. Introduction

In infrared (IR) photodetectors, the spectral rule \(\lambda = h/\Delta \) plays a fundamental role \cite{1} that determines the spectral threshold of photoresponse, where \(\lambda \) is the energy gap of the material or heterostructure corresponding to a minimum energy of the photons that can be absorbed to produce a photocurrent, and \(\lambda_i \) is the wavelength threshold. In p-type doped III-V semiconductors such as p-GaAs, IR photo-absorption results in hole transitions from the heavy-hole to light-hole bands to the spin-orbit split-off band, and from the heavy-hole to the light-hole band \cite{2}. Furthermore, free-carrier absorption increases with the wavelength \[3\] as \(\lambda^2 \). Using the p-GaAs/Al\textsubscript{1-x}Ga\textsubscript{x}As heterostructures for the internal photo-emission, \(\lambda_i \) can be tuned by changing the Al mole fraction \(x \) in the Al\textsubscript{1-x}Ga\textsubscript{x}As barrier region to design the detectors covering mid-IR to far-IR ranges \[4,5\]. Unlike these conventional approaches, an alternative mechanism was discovered that demonstrated an extended wavelength photoresponse in the spectral range to very-long-wavelength IR (VLWIR) range, far beyond the limit of \(\Delta \) in corresponding to mid-IR range \[6–8\]. More specifically, a photoresponse was observed up to a \(\lambda_i \sim 55 \) \(\mu \)m in p-GaAs/Al\textsubscript{1-x}Ga\textsubscript{x}As heterostructure-based IR detector with interfacial energy gap of \(\Delta \sim 0.40 \) eV (\(\sim 3.1 \) \(\mu \)m). The extended wavelength photoresponse was attributed to the hot-carrier redistribution in the p-GaAs absorber/emitters layer leading to a quasi-Fermi level at a higher energy level compared to the equilibrium Fermi level \[6\]. As a result, the effective energy gap \(\Delta \) becomes smaller, enabling the detection of extended wavelength IR radiation. Typical detector architecture used in these studies include p-type doped GaAs absorber/emitter and undoped Al\textsubscript{1-x}Ga\textsubscript{x}As barriers, sandwiched between highly doped p-GaAs top and bottom contact layers that also serve as collector and injector respectively. A barrier energy offset \((\Delta E) \), that is, a difference between the injector and collector barrier energy, was found to be necessary condition for the extended wavelength photoresponse mechanism, evident from the fact that extended wavelength photoresponse was not observed on a reference detector with no barrier offset. Furthermore, the extended wavelength photoresponse was observed in detectors with graded and constant shapes of the injector barrier \[7\]. Whilst the extended wavelength threshold can be observed up to VLWIR spectral range, the measured dark current of the detector agrees closely with modelled dark current with \(\Delta \sim 0.40 \) eV (\(\sim 3.1 \) \(\mu \)m), which is the interfacial energy gap of the detector under equilibrium condition \[8\]. In this article, we present results of a comparative study of five p-GaAs/Al\textsubscript{1-x}Ga\textsubscript{x}As heterostructures-based IR photodetectors. The results highlight that the barrier offset is a critical requirement for the extended wavelength photoresponse, and the graded barrier shows higher extended wavelength photoresponse. In addition, the barrier energy offset increased
from 0.10 eV to 0.19 eV enables increased photocurrent and optimized operating condition over a wide applied bias range. Furthermore, a comparison of dark current with a conventional detector shows a significant dark current advantage due to the extended wavelength mechanism.

2. Experiments

Five samples - SP1001, SP1007, 15SP3, LH1002, and SP1 were grown by molecular beam epitaxy on semi-insulating GaAs substrate. The parameters of these heterostructures are summarized in Table 1. In the samples SP1001, SP1007, and 15SP3, the p-GaAs emitters are 80 nm, and Al$_x$Ga$_{1-x}$As barriers are 80 nm and 400 nm below and above the emitter respectively. The 400 nm Al$_x$Ga$_{1-x}$As barrier is constant in all three samples. The 80 nm Al$_x$Ga$_{1-x}$As barrier is constant in SP1001, but in SP1007, and 15SP3, barrier energy profile is graded by linearly varying the Al mole fraction from $x_1 = 0.45$ at lower edge of the barrier to $x_2 = 0.75$ at the upper edge. The constant barrier in SP1001 and SP1007 have $x_3 = x_4 = 0.57$, but 15SP3 has $x_3 = x_4 = 0.39$. The comparison shows that a higher photoresponse was observed in SP1007 than in SP1001. Similarly, wavelength threshold is slightly longer in SP1007 (∼56 μm) compared to SP1001 (∼50 μm). The wavelength threshold of the photoresponse was determined by using the temperature dependent internal photoemission spectroscopy (TDIPS) method [9]. In this method, the value of the energy (Δ) corresponding to the spectral threshold of the photoresponse is determined by obtaining a fitting for quantum yield, $Y(h\nu) = (h\nu - \Delta)^2$, in the near-threshold region. The wavelength threshold for 15SP3 was found to be ∼59 μm. The results from these three samples indicate that the barrier energy offset gives rise to an extended wavelength mechanism, which enabled the VLWIR photoresponse. However, the three samples show

![Fig. 1. Schematic diagrams of the valence band alignment of the detectors under equilibrium: (a) detectors without barrier offset: LH1002 has one period and SP1 and 30 periods of 20 nm p-GaAs and 60 nm Al$_x$Ga$_{1-x}$As barriers. (b) SP1001 consists of an emitter (80 nm), an 80 nm Al$_x$Ga$_{1-x}$As barrier at the bottom, and a 400 nm Al$_x$Ga$_{1-x}$As barrier at the top, with an energy offset (ΔE_{v}) of ∼0.10 eV between the barriers. (c) In SP1007 and 15SP3 have Al$_x$Ga$_{1-x}$As barrier (80 nm) at the bottom is graded by linearly varying the Al mole fraction from from $x_1 = 0.45$ at lower edge of the barrier to $x_2 = 0.75$ at the upper edge. The constant barrier in SP1001 and SP1007 have $x_3 = x_4 = 0.57$, but 15SP3 has $x_3 = x_4 = 0.39$. SP1001 and SP1007 have the barrier offset ΔE_{v} = 0.10 eV and 0.19 eV respectively. The emitters are thick enough so that there will be a bulk-like distribution of energy states.

Table 1
Summary of sample parameters: Emitters in all samples have the doping level of 1×10^{19} cm$^{-3}$, except for 3×10^{18} cm$^{-3}$ in SP1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Δ (eV)</th>
<th>Energy offset (ΔE) (eV)</th>
<th>Al mole fraction x_1, x_2, $x_3 = x_4$</th>
<th>w_1 (nm)</th>
<th>w_2 (nm)</th>
<th>Number of Periods (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1001</td>
<td>0.40</td>
<td>0.10</td>
<td>0.75, 0.75, 0.57</td>
<td>80</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>SP1007</td>
<td>0.40</td>
<td>0.10</td>
<td>0.45, 0.75, 0.57</td>
<td>80</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>15SP3</td>
<td>0.40</td>
<td>0.19</td>
<td>0.45, 0.75, 0.39</td>
<td>80</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>LH1002</td>
<td>0.30</td>
<td>None</td>
<td>0.57, 0.57, 0.57</td>
<td>20</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>SP1</td>
<td>0.157</td>
<td>None</td>
<td>0.28, 0.28, 0.28</td>
<td>20</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Dark current (I-V-T) characteristics were measured using Keithley 2635B source meter. A positive bias is a positive voltage connected to the top contact, with the bottom contact grounded. Similarly, a negative bias is the positive voltage connected to the bottom contact, with the top contact grounded. Spectral photoresponse was measured using a Perkin-Elmer system 2000 FTIR set up. A bolometer with known sensitivity was used to measure the background intensity of the blackbody source to calibrate the responsivity of detectors.

3. Results and discussion

An extended wavelength photoresponse was observed in the samples SP1001, SP1007, and 15SP3 measured at 5.3 K, as shown in Fig. 2. Note that the samples SP1001 and SP1007 have the same barrier offset (ΔE_{v} = 0.10 eV), but SP1007 has graded injector barrier as opposed to a constant injection barrier in SP1001. Also, the spectral photoresponse used for the comparison are chosen from the optimal signal of each sample. SP1007 had an extended wavelength photoresponse in a small range of applied biases, less than −0.2 V in magnitude, as reported previously in Ref [6]. SP1001 showed the photoresponse on the extended wavelength regime in the applied biases of −0.6 V or less in magnitude. The comparison shows that a higher photoresponse was observed in SP1001 than in SP1007. Similarly, wavelength threshold is slightly longer in SP1007 (∼56 μm) compared to SP1001 (∼50 μm). The wavelength threshold of the photoresponse was determined by using the temperature dependent internal photoemission spectroscopy (TDIPS) method [9]. In this method, the value of the energy (Δ) corresponding to the spectral threshold of the photoresponse is determined by obtaining a fitting for quantum yield, $Y(h\nu) = (h\nu - \Delta)^2$, in the near-threshold region. The wavelength threshold for 15SP3 was found to be ∼59 μm. The results from these three samples indicate that the barrier energy offset gives rise to an extended wavelength mechanism, which enabled the VLWIR photoresponse. However, the three samples show
is temperature, \(T \) is the hole drift velocity as function of applied biases of \(\mu \)

\[
\text{IA} \propto \mu F \propto \frac{m^* k_B T}{2 \pi \hbar^2} \left(\frac{m^* k_B T}{2 \pi \hbar^2} \right)^{3/2} \exp \left(-\frac{\Delta - \alpha F - E_F}{k_B T} \right)
\]

Here, \(A \) is the electrically active area of the detector, \(e \) is the electronic charge, \(\mu (F) \) is the hole drift velocity as function of applied field, \(\nu_{sat} \) is the saturation velocity, \(m^* \) is the effective mass, \(k_B \) is Boltzmann’s constant, \(T \) is temperature, \(\hbar \) is the reduced Planck constant, \(\alpha \) is a fitting parameter related to barrier lowering due to the applied field, and \(E_F \) is the Fermi level. Details of the 3D carrier drift model used for dark current fitting are reported in Ref [8,10]. As seen in Fig. 4, the fitted dark current closely agrees with the measured dark current for 15SP3 with \(\Delta \sim 0.40 \text{ eV} \). We note that the experimentally measured dark current deviates only for small values of the applied bias, and mostly for positive bias conditions. One of the possible reasons for this behavior may be attributed to the non-uniform distribution of the applied bias due to presence of multiple resistive elements [4,11], that is, energy barriers with different barrier heights. At low biases, mostly the dc voltage is dropped across the graded barrier due to higher barrier energy, making the effective electric field across it much higher than the value under uniform distribution. This means the measured dark current would be higher than predicted by the model. The dc resistance of the high resistive element decreases as the bias increases, causing redistribution of dc voltage to constant barrier (with smaller barrier height) too, hence the measured dark current approaches the values predicted by the model. Overall, the results confirm that the dark current in the extended wavelength IR photodetectors is determined by the equilibrium interfacial energy, which is much larger than the actual energy corresponding to the extended wavelength threshold (≈ 68 \(\mu \)m). In other words, there is no compromise in terms of dark current due to the wavelength extension mechanism.

The next comparison of photoresponse and dark current in the conventional IR photodetector (SP1) and the extended wavelength IR photodetector (SP1007) is shown in Fig. 5(a) and (b) for measurements carried out at 50 K. In SP1, the wavelength threshold (≈ 8.2 \(\mu \)m) closely
agrees with $\Delta \sim 0.157 \text{eV}$. However, SP1007 shows an extended wavelength threshold of 8.9 μm. Given that the observed photoresponse in these two samples are similar to each other at 50 K, it is insightful to compare the dark current of these samples. The fitted dark current agreed closely with the measure dark current in both SP1 ($\Delta \sim 0.157 \text{eV}$) and SP1007 ($\Delta \sim 0.40 \text{eV}$) as seen in Fig. 5(b). Note that the dark current in extended wavelength IR photodetector SP1007 is significantly lower than the conventional photodetector SP1. These results also demonstrate the dark current advantage of extended wavelength photoresponse mechanism.

4. Conclusion

The study of p-GaAs/Al$_x$Ga$_{1-x}$As heterostructures-based extended wavelength IR photodetectors with reference to conventional IR photodetectors demonstrate that the heterostructures with a barrier energy offset (ΔE_b) is a critical requirement for the wavelength extension photoresponse mechanism. This mechanism enabled a VLWIR detection, with wavelength threshold of $\sim 68 \mu$m at 5.3 K even though the heterostructures had an equilibrium interfacial energy gap of $\Delta \sim 0.40 \text{eV}$ ($\sim 3.1 \mu$m). The dark current fittings obtained using a 3D carrier drift model, with $\Delta \sim 0.40 \text{eV}$, agreed closely to the measured dark currents, indicating no compromise in the dark current levels due to the wavelength extension mechanism.

Conflict of interest

The authors declared that there is no conflict of interest

Acknowledgements

This work was supported in part by the U.S. Army Research Office under Grant No. W911 NF-15-1-0018, and in part by National Science Foundation (NSF) under Grant No. ECCS-1232184. Funding was also received from the European Community’s Seventh Framework Programme (FP7-IDEAS-ERC) under grant agreement number 247375 ‘TOSCA’. Dilip Chauhan and Edmund Linfield acknowledge support from a GSU Brains & Behavior Fellowship, and the Royal Society and Wolfson Foundation, respectively.

References