Solid State Physics

 

The syllabus described here follows the text “ Solid State Physics ” by Ashcroft/Mermin. This is only a guide line. Changes will be made as necessary and as time permits. Time to time supplemental material will be given from other texts. In general a simple description for most of the sections covered here can be found in the book  “Introduction to Solid State Physics” by Kittel.

 Ch 1. The Drude Theory of metals

  1. Basic Assumptions

  2. Collision/Relaxation times

  3. DC electrical conductivity

  4. Hall effect/magnetoresistance

  5. AC Electrical Conductivity

  6. Plasma resonance thermal conductivity

Ch 2. The Sommerfeld Theory of Metals

  1. Fermi-Dirac distribution

  2. The quantum mechanics and electron density of states

  3. Free electron gas

  4. Sommerfield theory of conduction, Wiedemann- Franz Law

Ch 3. Failures of free electron model

  1. Inadequacies in the free electron transport coefficients

  2. Inadequacies in the static thermodynamic predictions

  3. Fundamental mysteries

Ch 4. Crystal lattices

  1. Periodicity of a crystal

  2. Basic lattice types

  3. Classification of Bravais, lattices and crystal structure  (Ch 7)

  4. Artificial structures and superlattices 

Ch 5. The reciprocal lattice

  1. Primitive unit cell, Wigner-Seitz cell

  2. Brillouin Zone

  3. Lattice Planes as Miller indices 

Ch 6. X-ray diffraction and crystal structure

  1. Formulation of Bragg and Von Laue condition

  2. Laue condition and Ewald’s construction

  3. Experimental methods

  4. Geometrical structure factor

  5. Atomic form factor 

Ch 8. Electrons in periodic structure

  1. Bloch Theorem

  2. Born-Von Karman Boundary Condition 

Ch 9. Electrons in a weak periodic potential

  1. Perturbation theory

  2. Energy levels near a single Bragg plane

  3. Zone schemes (Extended, reduced and repeated)

  4. Fermi surface and Brillouin Zones

  5. Band filling

  6. Holes in semiconductors crystal momentum 

Ch 10. Semiconductor Band Structure

  1. LCAO (Linear combination of atomic orbitals)

  2. S-level Bands

  3. Tight binding levels

  4. Wannier functions

  5. Spin-orbit coupling

  6. OPW, Pseudopotential, K.P, APW and KPR methods

  7. Silicon band structure 

Ch 12. Band structure modifications

  1. Band structure of semiconductor alloys

  2. Band structure of heterostructures

  3. Band structure of quantum wells

  4. Kronig-Penny model 

Ch 18. Surface Effects

(Dr. Thomas)

  1. Work function

  2. Contact potential

  3. Thermionic emission

  4. LEED/RHEED 

Ch 19. Classification of Solids

  1. Covalent, molecular and ionic crystals

  2. Alkali Halides 

Ch 20. Cohesive energy 

Ch 23. Lattice vibration and phonons

  1. Normal modes and phonons

  2. Polar optical phonons

  3. Debye and Einstein models 

Ch 24. Phonon dispersion relations

  1. Neutron scattering

  2. Brillouin, Raman scattering 

Ch 28. Homogeneous semiconductors

  1. General properties of semiconductors

  2. Intrinsic and extrinsic semiconductors

  3. Equilibrium density of carriers in doped semiconductors

  4. Hydrogenic levels

  5. Screening

  6. Modulation doping 

Ch 29. Inhomogeneous semiconductors

  1. P-N junction in equilibrium and non-equilibrium

  2. Rectification

 Ch 30. Defects in crystals

  1. Point defects

  2. Color centers

  3. Schottky and Frenkel defects

  4. Stacking faults and grain boundaries 

Other topics

  1. Novel device structures

  2. Amorphous semiconductors

Return to Dr. Perera's Homepage
Return to Physics & Astronomy Homepage