Surface plasmon enhanced IR absorption: Design and experiment

M.S. Shishodia a, P.V.V. Jayaweera a, S.G. Matsik a, A.G.U. Perera a,*, H.C. Liu b, M. Buchanan a

a Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
b Institute of Microstructural Sciences, National Research Council, Ottawa, Canada K1A0R6

Received 8 February 2010; received in revised form 19 December 2010; accepted 27 December 2010
Available online 1 January 2011

Abstract

Metal corrugated surfaces have the potential of enhancing optical absorption through surface plasmon (SP) excitation facilitated by light-metal interactions. The successful utilization of metal corrugation induced optical absorption can improve the response of free carrier absorption (FCA), based Heterojunction Interfacial Workfunction Internal Photoemission (HEIWIP) detectors. This article reports theoretical and experimental investigations of SP-induced infrared (IR) absorption in GaAs based structures, exhibiting absorption peak wavelength (λ_p) in the 10–14 μm region. Moreover, substantial absorption and responsivity improvement using metallic corrugation on typical heterojunction detector is predicted. Proposed design and optimization approaches will be useful for improving the performance of IR detectors.

© 2011 Elsevier B.V. All rights reserved.