Low-Cost ZnO-Based Ultraviolet–Infrared Dual-Band Detector Sensitized With PbS Quantum Dots

P. Viraj Vishwakantha Jayaweera, P. K. D. Duleepa P. Pitigala, Jia Feng Shao, Kirithi Tennakone, A. G. Unil Perera, Senior Member, IEEE, Pradeep M. Jayaweera, and Jonas Baltrusaitis

Abstract—A low-cost photoconductive dual-band detector based on a ZnO film sensitized with lead sulfide quantum dots (PbS-QDs) is reported. The UV response arises from the interband absorption of UV radiation by ZnO, and the IR response is due to the absorption in the PbS-QDs. The detector exhibits UV response from 200 to 400 nm with a peak responsivity of 4.0×10^5 V/W and detectivity D^* of 5.5×10^{11} Jones at 370 nm at room temperature. The observed visible–near IR response is from 500 to 1400 nm with a responsivity of 5.4×10^5 V/W and D^* of 7.3×10^{11} Jones at 700 nm operating at room temperature. By increasing the PbS-QD size, the IR response can extend up to 2.9 μm.

Index Terms—Dual band, lead sulfide quantum dots (PbS-QDs), low cost, ultraviolet–infrared (UV–IR), ZnO.