
AC CIRCUIT ANALYSIS

Relation to DC Circuit Analysis: 
In the DC circuits we considered, the currents were determined by the combination of
voltage sources and resistors.  Because of the linear relation between voltage and current
for resistors (Ohm’s law: V=IR), analyses using Kirchoff’s laws led to systems of linear
equations which were solvable by standard techniques.  In addition to a straightforward
application of Kirchoff’s laws via loop and junction techniques, we examined three methods
(superposition, nodal analysis, and Thevenin’s theorem) for setting up the linear equations
in a way to minimize the algebraic manipulations.

AC sources require one more descriptive term than DC sources.  Specifically, in DC
circuits, it is sufficient to describe the current or voltage in terms of the “amount” or
amplitude.  By definition, AC sources are not steady and thus the “amount” is continually
changing.  However, the maximum “amount,” or amplitude, combined with the repetition
rate, or frequency, form a suitable combination of descriptive terms.  (It may also be useful
to specify the “waveform” : sinusoidal, square, triangular, sawtooth, etc.  Our focus will be
on the sinusoidal shape.)  Thus, AC introduces frequency as the additional descriptive
term.

If the only circuit elements are resistors and voltage sources, then AC circuits can be
analyzed with exactly the same techniques as DC circuits.  However, capacitors and
inductors are also important circuit elements, and we need to introduce them at this point.
To figure out what modifications may be needed to our circuit analysis methods when
capacitors and / or inductors are present, we need to recall the relations between voltage
and current:

Resistor: V  =  I R

Capacitor: V  =  Q / C  =  I dt /  C

Inductor: V   =  -L(dI / dt)

R R

C C C

L L

ze j

Obviously, the voltage-current relations for capacitors and inductors are not linear.
Nevertheless, for sinusoidal waveforms, there is kind of linearity between these
parameters.  Using capacitors as the example,  when IC = IC0SinTt, Vc = IC0(-1/Tt)CosTt
= VC0 CosTt.  Thus, VC0 = IC0(-1/Tt) and the linear relation is between the amplitudes of
the voltage and current.  This result is the basis of reactance, a quantity which is used for
both capacitance and inductance; i.e., capacitive reactance = XC = (VC0 / IC0) = (1/TC).

Although this helps with the problem of using the DC-based procedures with AC circuit
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analysis, it does not completely solve the problem.  Specifically, the amplitude of an AC
waveform is its maximum or peak, and the peak of the voltage waveform (a sine function
in the example above) occurs at a different time than the peak of the current waveform
(a cosine function in the example).  In other words, for both capacitors and inductors, the
voltage and current are 90° (or B/4) out of phase.

Because the current and voltage may be out of phase in AC circuits, the analytical methods
must be able to keep track of phase as well as amplitude.  (In the circuits, the frequency
property of AC develops into the phase property; i.e., the necessity to keep track of phase
is the consequence of frequency.)  Thus, the algebra / arithmetic used for AC circuit
analysis must have the capability of dealing with two parameters at the same time.
Mathematics has several tools for doing this.  For example, vectors have both magnitude
and direction, so vector algebra / arithmetic has this capability.  In addition, complex
numbers have a real and an imaginary part, so complex algebra / arithmetic also has the
suitable character.  

In this course, and in the larger field of electrical engineering, the method most often
chosen is based on complex numbers.  A basic reason for doing so is that division is a
commonly-needed operation in AC circuit analysis; while division is a well-defined operation
for complex algebra, it is not a defined operation for vectors.

In summary, therefore, the concept of resistance (R=V/I) in DC circuits is extended to the
concept of impedence in AC analysis.  Impedence is a complex number in general and
thus carries both amplitude and phase information.  For resistors, the impedence is the
resistance; for capacitors and inductors, the impedence is built from the reactance (XL and
XC).  A summary of impedence descriptions for the three basic circuit elements is listed
below in the table ( N.B. T = 2Bf):

Element Impedence

Resistor ZR = R

Capacitor ZC = -jXc = -j(1/TC)

Inductor ZL = jXL = j(TL)

Moreover, impedence “behaves” like resistance.  That is, the series and parallel
combination rules are the same, AC “Ohm’s law” is V = IZ, etc.  With these properties and
definitions, the same methods used for DC circuit analysis can be applied to AC analysis:
loop analysis, superposition, nodal analysis, and Thevenin’s theorem.  All that is necessary
for completing the analysis and obtaining an “answer” is suitable application of complex
number algebra and arithmetic.
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Z1

Z2

Z3

Vg

Z1

Z2 Z3Vg

Z 0.5k
j0.5k j0.75k
j0.5k j0.75k

0.5k j1.5k = 0.5k(1+ j3)eq = +
−
−

= +
b gb g

Example 1: Zeq = Z1 + Z2 + Z3 Sample Numbers:
Z1 = 500S = 0.5k

Ig = Vg / Zeq Z2 = -j750S = -j0.75k
Z3 = j500S = j0.5k

Zeq = 0.5k - j0.75k + j0.5k = 0.25k (2 - j)

I  =  20V
0.25k(2 -  j)

 80
5

(2 j) ma =  16(2 +  j) mag = +

Also: V1 = Ig Z1 = [16(2 + j)ma](0.5k) = 8(2 + j) V
V2 = Ig Z2 = (-j0.75)(16)(2 + j)V = 12(1 - j2)V
V3 = Ig Z3 = (j0.5k)(16)(2 + j) V = 8(-1 + j2)V

Note that: V1 + V2 + V3 = [(16 + 12 - 8) + j(8 - 24 +
16)]V = 20V = Vg

Note also that: V 17.89V1 = =8 5V

V 26.83V2 = =12 5V

V 17.89V3 = =8 5V

Obviously, *V1* + *V2* + *V3* … *Vg*; in fact, *V2* > *Vg* all by itself for this example!!!

Example 2: Zeq = Z1 (series) (Z2 * Z3)

= Z Z Z
Z Z1

2 3

2 3
+

+

Ig  =  Vg / Zeq

For the values:
Vg = 20V,  Z1 = 0.5k,  Z2 = -j0.75k,  Z3 = j0.5k,

This becomes:
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−
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Use of Thevenin’s Theorem in AC Circuit Analysis: 
Thevenin’s theorem is particularly important in general since it emphasizes the existence
of simplified equivalent circuits.  Equivalent circuits are central to the approach of using
model circuits to describe and predict the behavior of electric and electronic circuits.

The following example, simply the circuit of example 2 with a different set of component
values, illustrates Thevenin’s theorem applied to AC circuit analysis as we did with DC
circuits.

Example 3: Vg = 20V,  Z1 = -j0.75k,  Z2 = j0.5k,  Z3 = 0.5k

Question: I3 = ?

Dividing the circuit as shown for use of Thevenin’s
theorem yields the following for Zth and Vth:

Zth = Z1 * Z2 = Z1Z2 / (Z1 + Z2) 
     = (-j0.75k)(j0.5k)/(-j0.75k + j0.5k) 
     = 3(j0.5k) = j1.5k
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Algebraic Voltage Differences with AC: 
With DC circuits, it was important to set up the analysis by picking a current direction to
establish the “high-voltage” side of resistors.  While the physics behind this is also
important with AC circuits, the periodic reversal of current makes the concept of direction
ambiguous.  (Actually, the relative signs of algebraic voltage differences in AC are
expressed as the relative phases.)

The AC procedures we are setting up take care of the bookkeeping automatically as
follows:

 1. When represented by impedences, voltage
differences are always voltage drops (expressed as
negative) for setting up loop equations:

Loop Equation: 0 = Vg - IZ1 - IZ2 - IZ3

2. Impedence descriptions for R, L, and C incorporate
“+’s” and “-‘s” along with the “j’s” to take care of
relative phases.  (Note the “-“ in  ZC = -j/TC.)

Interpretation of Impedence in the |Z|, N Representation: 
Recall that the purpose of complex  impedence is to manage the two parameters needed
in AC analysis, the ratio of voltage and current amplitudes and their phase relation.  The
meaning of |Z| is straightforward: it expresses the ratio of voltage and current amplitudes,
|Z| = V0 / I0. The angle N is most easily interpreted using the exponential form of complex
numbers:

Thus, the “angle” described by complex impedence expresses the phase relative angle
between the voltage and current for the impedence.  Specifically, if N >0, the voltage is
ahead of (leads) the current; if N < 0, the voltage is behind (lags) the current. 

Multiple Voltage Sources: 
Although AC circuit analysis with multiple sources is straightforward, it is necessary to
consider two points unnecessary in DC circuits.  First, the sources may operate at different
frequencies.  The second is that sources even at the same frequency may be out of phase.
For DC, all sources are at the same frequency (f = 0) and phase, and appropriate
combination of DC sources into one equivalent unit is simple addition.  For AC sources at
the same frequency but different phase, the combination requires use of complex (or
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+

Vac @ f

Vdc

V = Vac @ f + Vdc

V1 @ f1

V2 @ f2

V = V1 @ f1 + V2@ f2

P   1
T

V(t)I(t)dt,   T =  Period of waveformav

T
= z0

I(t) =  I sin t; As a result of V =  IZ,
V(t) =  V sin( t +  ).

P =  V I
T

sin( t +  )sin tdt

0

0

0 0
0

T

ω
ω φ

ω φ ωz

phasor) analysis for expressing the voltages in the rectangular form before addition.  For
AC sources at different frequencies, about the best “single unit” combination is expression
of the combined voltages with terminology such as “V = V1 @ f1 + V2 @ f2 .“  Note that this
is the general idea of superposition.

We will not study further AC circuits with multiple sources.  However, it will be useful to
consider the case of voltages having components at different frequencies.  Two examples
illustrated with circuits are:

Power in AC circuits: 
In our discussion of DC we derived the basic relation for electric power:

P = VI.

Since V and I in general are continuously changing with AC, we must face the question of
what V and I values are appropriate for calculating the power.  From this situation comes
the concept of average power.  As the values are periodically repetitive average power
needs only to be calculated from one cycle as follows:

The exact form of V(t) and I(t) depend on the waveform, and thus the result of the
integration is waveform-dependent. For our case, that of sinusoidal waveforms, the result
is as follows:

For a resistor, N = 0, so sin(Tt + N) = sinTt; for both capacitors and inductors, N = 90°,
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P  =  P  =  I R =  I R
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For resistors, recalling that  =  2 f =  2
T

:

P =  V I
T

sin tdt =  V I
2

t -  1
2

sin2 t  =  V I
2

For capacitors and inductors,

P =  V I
T

cos tsin tdt =   V I 1
2

sin t  =  0 !!!
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so sin(Tt + N) = cosTt.  The results are as follows:

The result for capacitors and inductors is
particularly interesting: on average, they take no
net power from the source of energy.
Physically, what happens is that the energy source
for the circuit (the power supply) puts energy into
C’s and L’s for half the cycle, while the C’s and L’s
give it back during the other half-cycle.  One way
to see this behavior is to examine the waveform
for C or L shown in the figure.  During the 1st and
3rd quarter cycles the signs of V and I are the
same, and the signs are opposite during the other
two.  Thus, energy flows one way during quarter-
cycles 1 and 3, while it flows the other during 2
and 4.

The result for resistors forms the basis of the rms (root-mean-square) values often used
in describing AC voltage and current.  Specifically, average power is exactly what a resistor
experiences for DC; using V = IR and setting Pav for AC equal to the power for DC, we see:

An example of the extent to which  rms values are used is the description of AC outlet
voltage supplied by Georgia Power: 120V is really 120Vrms.  Since Vrms is less than V0
(about 70%), V0 = 150V, approximately! Also, the power specifications of light bulbs, for
example, is given in average (or rms) power: 40W for a bulb means that 40W = Vrms x Irms.
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 P  =  V  I
2

 cos   =  V  I  cos  .av
0 0

rms rmsφ φ

Z  =  V
I

, Z =  Re(Z) + jIm(Z) =  Z  @    cos  =  Re(Z)
Z

 =  Re(Z) I
V

thus,

P  =  P  =  I
2

 Re(Z). 

0

0

0

0

av rms
0
2

φ φ⇒ .

(Further, since a bulb is essentially a resistor, its resistance under operating conditions can
be estimated according to  R = P / I2; or, more conveniently since the operating voltage is
the usually given parameter,  R = V2 / P.)  Note also that |Z| = V0 / I0 = Vrms / Irms.

Power in a General Impedence: We’ve seen that the power in individual components can
range from 0 (capacitors and inductors) to ½V0I0 (resistors).  The obvious question is “What
about the general case of a Z which is not a single component?”  This can be addressed
by returning to the integrals above for the general case of N neither 0 nor 90°.  Without the
details, the result is 

Since N is the phase angle between V(t) and I(t) for the impedence, and N is also related
to the impedence according to 
 

This of course makes sense because the real part of Z is the resistive component while
the imaginary part is reactive.  We saw above in the discussion of capacitors and inductors
that no power is dissipated by reactive elements.

SUMMARY: AC power is generally expressed as Prms or “equivalent DC power.”  For
this purpose, power is Prms = Vrms Irms cosN, where N is the “angle” associated with
the complex impedence Z = V / I.  (CosN is called the “power factor” by electric utility
companies.)

Applications of AC Circuits: 
Circuit descriptions and analyses are used in two general ways.  One is to describe and
predict the behavior of existing devices.  This of course is the concept of a model for the
circuit.  The second way is to use the behavior of circuit elements to design circuits to
accomplish specific functions.  Associated with this objective is that of modifying (or
engineering) existing devices to provide improved performance or to meet different
objectives.

Obviously, AC circuits may be used in many ways.  We will examine the specific application
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of filtering on the basis of frequency.  The concept of filtering can
be illustrated as in the inset.  An everyday example of filtering in
general is the paper used in coffee makers: its purpose is to
separate the liquid coffee from the coffee grounds. 
 

Everyday examples of frequency-based filtering are radio and TV tuners, the “equalizer”
on stereo systems, and the “crossover” network for stereo speaker systems.  In these, the
complete signals are superpositions of signals of different amplitudes at different
frequencies, and the objective is to sort them out.  Tuners, for example, need to “select”
from the mixture the frequency of the broadcast chosen; the equalizer separates the
different frequency ranges of an audio signal to permit emphasis / de-emphasis of that
component only (followed by re-combination); the crossover network is designed to direct
the low frequency portion of the audio signal to the “woofers,” the middle range of
frequencies to the mid-range speakers, and the high frequency component to the
“tweeters.”

RC Low-Pass Filter:
There are many sophisticated methods for creating frequency-based electronic filters.
However, the frequency dependence of capacitors and inductors make it possible to obtain
filtering behavior also with very simple circuits.  For example, consider the simple RC circuit
shown below:

For a voltage Vin applied to the input, the output voltage will be:

V IZ V
Z Z

Z Z
Z Z

V

r V
V

Z
Z Z
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(R j / C)

1
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r 1
j RC 1

1
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R C
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2

= =
+

F
HG

I
KJ =

+
F
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I
KJ

= =
+

=
−
−

=
+

=
+

=
+

ω
ω ω

ω ω
* *

b g
Note that |r| is simply the magnitude of the output
to input voltage ratio.  The frequency dependence
of |r| is shown in the graph.

Obviously, the output is a greater fraction of the
input for cases where TRC is “low.”  (In particular,
when TRC # 1, |r| $1 / /2 and when TRC $ 10,
|r| # 0.1. We’ll emphasize this point later.)   The
emphasis of the circuit’s behavior on “low”
frequencies leads to the name “low-pass” filter.
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RC High-Pass Filter:
Swapping positions of the R and C gives the circuit shown below.  Analysis like that used
for the low-pass circuit above gives the results:

This relation is shown graphically on the right.
Obviously, the frequency response of this
circuit emphasizes “high” over ”low”
frequencies.  Thus, it is a high-pass circuit.

Usefulness of “TRC = 1":
While these simple RC filters exhibit low-pass
and high-pass behavior, they are not perfect
filters.  “Perfect” filters (which don’t really
exist), exhibit the so-called “brick-wall”
behavior illustrated in the graphs below.

Brick-wall filters have the property of passing at 100% the signals on one side of the cutoff
frequency and rejecting at 100% everything on the other side.  Obviously, our simple RC
filters do not have this characteristic.  So, how can we characterize the “cutoff”
characteristics of the RC filters?  A reasonable (but imperfect!) cutoff frequency is T such
that TRC = 1.  Referring to the graphs above for the RC versions, we see that most of the
rejection occurs for frequencies on one side of this frequency and the best “passing” occurs
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for frequencies on the other side.  Thus, it is customary to define for the RC circuits shown

the cutoff frequency .  Moreover, at that frequency, .ω co
1

RC
= r 1

2
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Band-Pass Filters:
Of the “everyday” examples mentioned earlier, tuners (and equalizers) require selecting a
specific frequency range from the overall multi-frequency signal.  This is the behavior of a
band-pass circuit.  The band-pass behavior can also be achieved with simple RLC circuits
as follows:

For this circuit,

The frequency dependence of |r| is shown in the
figure for two different values of Q. Note that the
higher the value of Q, the narrower the pass
band; that is, for higher Q, the circuit is more
“selective.”



PHYS 3500 / 8800 Georgia State University Page 12 of 15

want V
V

 0.1 @100 kHz  (100% -  90% = 10%)

and V
V

 0.8 @  2 kHz 

out

in

out

in

≤

≥

R
CInput OutputI

V IZ V
Z Z

Z Z
Z Z

V

r V
V

Z
Z Z

( j / C)
(R j / C)

1
j RC 1

r 1
j RC 1

1

RC 1

out c
in

R C
C

C

R C
in

out

in

C

R C

2

= =
+

F
HG

I
KJ =

+
F
HG

I
KJ

= =
+

=
−
−

=
+

=
+

=
+

ω
ω ω

ω ω
* *

b g
r = ⇒ 1

1 +  ( RC)
  RC =  1

r
1 -  r

2

2

ω ω

@  100 kHz, r   0.1  RC  1
2 x10 (0.1)

1- (0.1)  F

        RC  10
2

 1.6 x 10  F

@  2 kHz, r   0.8  RC  1
(2 )1.6x10

1- (0.8)  F

        RC  6.0x10  F

Thus,   

5
2

-4
-5

3
2

-5

≤ ⇒ ≥

≥ ≈

≥ ⇒ ≤

≤

≤ ≤

π

π

π

Ω

Ω

Ω

Ω

Ω Ω1.6 x 10 F  RC  6.0 x 10 F-5 -5

AC Problems Focused on Filter Design:

Example 4:

Given a signal, V = 2.0V @ 100kHz + 1.0V @ 2kHz, find RC values for the appropriate
circuit to reject at least 90% of the 100 kHz component while passing at least 80% of the
2 kHz component.

Summary:  

C  Rejection of higher frequency and passing of lower requires a low-pass filter:
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Example 5:

For the same signal as example 4, find RC values and the appropriate circuit to reject 95%
or more of the 2 kHz component while passing 90% or more of the 100 kHz component.

Summary: want |r| $ 0.90 @ 100 kHz, and |r| # 0.05 @ 2 kHz.

C Rejecting low frequencies while passing the high frequencies requires a high-pass
circuit:

NOTES: 

1. For both examples, the result was the product of R and C (in ohms and Farads).
Obviously, there are infinitely many combinations which will give the same RC product; thus
the result does not yield specific values for R and C.  This provides the opportunity to meet
at least one other performance objective which may involve R and / or C, a typical one
being the sensitivity of the filter’s performance to loading.  (Otherwise, R and C can be
chosen by convenience as long as their product is within the required RC range.)

2. Also, it is possible for the low and high frequency design targets to be incompatible.  For
example, changing the high frequency objective for example 5 from “passing 90% or more”
to “passing 95% or more” leads to non-overlapping values for the RC product for the two
frequencies.  (Check it out!)
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Effect of “Loading” on Filter Performance: 
In operation, filter circuits are connected between the source of the signal to be filtered and
the device, or load, to which the signal is to be transferred.  However, the filter circuits
above were designed and analyzed with no load attached or considered.  Practical
considerations, therefore, require analysis of the possible effect of connecting an actual
load.  In other words, under what conditions might the characteristics of the load bring the
filter’s performance outside the range specified by the design criteria?

The effect of loading is most directly analyzed by use
of Thevenin’s theorem. From that perspective,
dividing the circuit with load at the output terminals
indicated, the Thevenin voltage is simply the output
voltage derived before for the “unloaded” circuit,
while the Thevenin impedence is the parallel
equivalent of Z1 and Z2.

From these expressions and analysis of the “Thevenin-equivalent” version of the loaded
circuit,  the result for the “loaded” output is:

In summary, if ZTH << ZL , rload ~ ro.  For RC filters, note that Z1 or Z2 will be an R and the
other a C.  Thus, regardless of whether the filter is low- or high-pass, the Thevenin
equivalent impedence is:
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Example 6: 

The RC high-pass circuit below was designed to meet the filtering specifications:

  |r|  $ 0.7 @ 100 kHz and
  |r|  # 0.1 @ 500 Hz.

Calculate the lowest value of RLoad (load
resistance) for which the circuit will still
meet the specifications.

One straightforward way of proceeding
is to recognize that the load resistance is in parallel with the 1.0k resistor of the filter.   The
overall filtering effect will therefore be determined by the capacitor and the parallel
equivalent of Rload and 1.0k.  The question then becomes that of finding the value of Req that
will bring |r| to 0.7.  Rload can then be calculated from Req since

From before, 

Therefore, for load resistances of values Rload < 1083S, the filtering behavior of this circuit
no longer meets the specified requirements.


