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Oscillations, vibrations, and simple harmonic motion (SHM)
Definition of SHM: Sinusoidal (or cosine) oscillationsDefinition of SHM:  Sinusoidal (or cosine) oscillations 

Functional form:  x(t) = Acos(ωt + φ), where
x(t) = position
ω = angular frequency (radians / s) = 2πf
f f i H (H )f = frequency in Hertz (Hz)
A = amplitude
φ = phase (to come later)

Other relations:
f = frequency = repetitions / time
T = Period = time / repetition
T = 1/f

• Note that the motion has gone through one complete cycle when ωt = 2πNote that the motion has gone through one complete cycle when ωt = 2π.  
Thus the functional form can be rewritten in many forms:

• Also note that velocity and acceleration are related to position by

πω φ π φ φ2 tx(t) = Acos( t + ) = Acos(2 ft + ) = Acos(  + )
T

Also, note that velocity and acceleration are related to position by  
ω φ

ω ω φ−

x(t) = Acos( t + ) 
dxv(t) =  = Asin( t + )
dt
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2ω ω φ= −
2

2

dv d xa(t) =  = Acos( t + )
dt dt



So how do we get SHM?
• Basic answer: spring-like forces, i.e., ones described by a linear restoring p g , , y g

behavior--- F = -kx.
• Why is this important?  

1. SHM gives the most basic version of a periodic motion;
2 The characteristic of a linear restoring force is a good approximation of2. The characteristic of a linear restoring force is a good approximation of 

more complex forces (one example is the simple pendulum);
3. Chemical bonds, and thus their vibration behaviors, can be approximated 

by this type of force;
4 The deflection (or bending) behavior of structural units (beams etc ) can4. The deflection (or bending) behavior of structural units (beams, etc.) can 

be described to a good approximation by these forces;
5. etc.

• How do we know spring-like forces produce SHM?  Look at the “F = ma” 
l tirelation:

⎛ ⎞⇒ ⇒ ⎜ ⎟
⎝ ⎠

2 2d x(t) d x(t) kma(t) = - kx(t)  m  = - kx(t)   + x(t) = 0
dt dt m

For this type of  differential equation, the general solution is

• Thus this demonstrates that SHM is the result of the linear restoring force

2ω ω ω kx(t) = Asin( t) + Bcos( t)       with = 
m

(A and B are amplitude parameters determined by the initial conditions.)
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Thus, this demonstrates that SHM is the result of the linear restoring force.



Dynamics of SHM
ω φx(t) = Acos( t + ) 

2

ω ω φ

ω ω φ

−

= −
2

2

dxv(t) =  = Asin( t + )
dt
dv d xa(t) =  = Acos( t + )
dt dt

• From the relations for x(t), v(t), and a(t), we see that 
the maximum displacement is  A, the maximum 

2

dt dt

speed is ωA, and the maximum acceleration is ω2A.  
Furthermore, from the relations between sin and cos
functions, the maximum displacement occurs when 
the speed is zero, and the maximum speed occurs 
when the displacement is zero.

• Also, we know from previous discussions that the 
spring-mass system is conservative so that

Δ Δ ⇒ 2 21 1K + U = 0 E = mv + kxΔ Δ ⇒ T 2 2

2 21 1
T max2 2

K + U  0 E  mv  + kx
and that
E = mx = kA
or
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ω2 2 21 1
T max2 2E = mv = m A



Problem 14-13.  A 200 g  mass attached to a horizontal spring oscillates at a 
frequency of 2.0 Hz.  At t = 0, the mass is at x = 5.0 cm and has vx = -30.0 cm/s. q y x
Determine:

a. The period. T = 1/f = 0.5 sec
b. The angular frequency. ω = 2πf = 12.57 rad/s
c The amplitude ET = ½kA2; Need k = mω2 = 31 6 N/m &c. The amplitude. ET  ½kA ; Need k  mω  31.6 N/m & 

ET = ½kx2 + ½mv2 = 0.0485 J, so
A = (x2 + mv2/k)½ = (x2 + v2/ω2)½ = 5.54 cm

d. The phase constant. x(t) = Acos(ωt + φ), so x(0) = Acos(φ) & 
φ = cos-1[x(0)/A] = cos-1[5/5.54] = 25.5° = 0.445 rad

e. The maximum speed. ET = ½m(vmax)2, so vmax = (2ET/m) ½ = 69.6 cm/s
also, vmax = A ω

f The maximum acceleration a = ω2A = 875 3 cm/s2f. The maximum acceleration.  amax = ω A = 875.3 cm/s
g. The total energy. ET = 0.0485 J
h. The position at t = 0.40 s. x(0.40) = 5.54cos(12.57 *0.04 + 0.445) cm

= 3.23 cm
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Energy in Simple Harmonic motion (SHM):
• Review Example 14.5, p. 419

Dynamics of SHM:
• Review Example 14.6, pp. 422-423

Vertical Oscillations: How does g affect things?
• No effect on frequency
• Shifts x = 0 position by x = mg / kp y g

The simple pendulum: how does it execute SHM?
• For SHM, ma = -kx = md2x/dt2

• This has the form: d2g/dt2 = -(k/m)g where g represents a coordinate [such as• This has the form: d g/dt = -(k/m)g, where g represents a coordinate [such as 
linear position (x), arc length (s), angular position (θ), etc.] and leads to ω2 = k/m.

• For the simple pendulum (as discussed in section 14.5, pp. 425-426), the force 
law, with s = Lθ and the small-angle approximation that sinθ ~ θ, becomes 
mL(d2θ/dt2) = mgθ which has the form d2θ/dt2 = (g/L)θmL(d2θ/dt2) = ~ -mgθ, which has the form d2θ/dt2 = ~ - (g/L)θ. 

• Thus, by comparison with the spring-mass system, ω2 = g/L.
• Alternately, we can note that the potential energy for the exact SHM system has 

the form U = ½kx2, which is a parabola.  For the pendulum, Ug = mgL(1-cos θ), 
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g
which is a circle.   A circle ~ a parabola for small θ.



Damped harmonic motion:
• Basic idea: when set into “motion ” the oscillations will continue until the energy• Basic idea: when set into motion,  the oscillations will continue until the energy 

is removed (or dissipated).
• Typical damping is proportional to speed (or the 1st derivative of the 

generalized coordinate g mentioned before).
“D i ” h ib i l• “Damping” removes the vibrational energy.

http://www.lon-capa.org/~mmp/applist/damped/d.htm

Driven oscillations:
• Basic idea: all objects have a “natural frequency” and a damping factor
• Energy can be put into the system @ the natural frequency.
• If the damping is low enough that the energy put in is more than that taken out 

by damping, the vibrational amplitude will build up, possibly to catastrophic by da p g, t e b at o a a p tude bu d up, poss b y to catast op c
levels.

http://www.walter-fendt.de/ph14e/resonance.htm

D i h i ti i b ki lDriven harmonic motion—voice breaking glass:
http://www.youtube.com/watch?v=eTWDEsGlPO8&NR=1&feature=fvwp
http://www.youtube.com/watch?v=IZD8ffPwXRo&feature=related 1:42

1:30

Driven harmonic motion—Tacoma Narrows bridge:
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http://www.youtube.com/watch?v=j-zczJXSxnw
g



Ch. 15: Fluids & elasticity
• Fluids: fluids are not rigid and “can take on the shape of their container ”• Fluids:  fluids are not rigid and can take on the shape of their container.   

Gases & liquids are obvious examples.  An important characteristic of many 
liquids is that they are (nearly) incompressible—examples are water and 
hydraulic fluids.

Press re P force / area F/A Units N/m2 (1 N/m2 1• Pressure: P = force / area = F/A;  Units = N/m2 (1 N/m2 = 1 
Pa); lb/in2; mm Hg (1 mm Hg = 1 Torr ); cm H2O; etc

• (mass) Density:  ρ = mass / volume = M / V; units = kg/m2; 
g/cm3, kg/liter; g/ml, etc. (1 ml = 1cm3 = 1cc)

• Pressure at a depth in a fluid—is due to the weight of the fluid 
above it:  Above the space of area A is a column of fluid with 
height d (the depth); the weight of this column is Mg = ρ(Ad)g, 
which leads to P = F/A = Mg/A = ρgd

• Archimedes’s principle, buoyancy, and floating—arise from 
the pressure-at-a-depth result: for any 3-dimensional object, the 
pressure at its bottom, which is at a greater depth,  is larger than 
the pressure at its top.p p

• The expression for the buoyant force:  At the bottom, the 
pressure is ρgdbottom, at the top it is ρgdtop, and their difference is 
ΔP = ρg(dbottom – dtop). (dbottom – dtop) = height of the object.  
Multiplying both sides by A gives the net force Fnet = ΔP(A) = 
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u t p y g bot s des by g es t e et o ce net ( )
ρgA height.  Because A*height is the volume of the object, this 
becomes Fbuoyant = ρgVobj = ρgVdisp, where vdisp is the volume of 
fluid displaced.



• Pressure in fluids & Pascal’s Principle:  “A change in pressure at one point 
i i ibl fl id di i i h d t ll i t i th fl id ”in an incompressible fluid appears undiminished at all points in the fluid.”

• Hydraulics: come from application of Pascal’s principle
• In the situation sketched to the side, applying force F1 to the 

piston of area A1 creates pressure P = F1/A1.  This is 
“transmitted” to the other piston of area A2 to create force    
F2 = PA2 = (F1/A1)A2 = F1(A2/A1). Obviously, if (A2/A1) > 1, 
then F2 > F1.  (F2/F1 =A2/A1 is the “mechanical advantage” of 
the system.)

• However, to accomplish this, the smaller piston must “pump” 
a volume of fluid into the larger cylinder V = d2A2.  To do so, 
the smaller piston must move d1 = V/A1 = d2(A2/A1), which is 
greater than d2 by the same ratio that F2 is greater than F1.g 2 y 2 g 1

• If the two pistons are not at the same level (h2 ≠ h1), and this 
naturally occurs when they move, then there is a pressure 
difference on both sides due to the “pressure-at-a-depth” 
result: ΔP = ρfluid(h2 – h1)g. Holding an object with theresult:  ΔP   ρfluid(h2 h1)g.  Holding an object with the 
pistons at different heights requires adding this pressure to 
the lower piston.

• Work through example 15.7 on page 455.

11 / 16 / 2010, P2211K



Assignment:Assignment:   
• Review Chapter 13 with a focus on the more 

general form for gravitational potential energy 
d th “ l it ” ti 13 5and the “escape velocity,” section 13-5.

• Read Chapters 14 & 15
• Begin Reading Chapter 16Begin Reading Chapter 16
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