P2211K 11 / 16 / 2010

11 / 16 / 2010, P2211K

Oscillations, vibrations, and simple harmonic motion (SHM) Definition of SHM: Sinusoidal (or cosine) oscillations

Functional form: $x(t) = Acos(\omega t + \phi)$, where x(t) = position $\omega = angular frequency (radians / s) = 2\pi f$ f = frequency in Hertz (Hz) A = amplitude $\phi = phase (to come later)$ **Other relations**: f = frequency = repetitions / timeT = Period = time / repetition

• Note that the motion has gone through one complete cycle when $\omega t = 2\pi$. Thus the functional form can be rewritten in many forms:

$$x(t) = A\cos(\omega t + \phi) = A\cos(2\pi ft + \phi) = A\cos(\frac{2\pi t}{T} + \phi)$$

T = 1/f

· Also, note that velocity and acceleration are related to position by

$$x(t) = A\cos(\omega t + \phi)$$
$$v(t) = \frac{dx}{dt} = -\omega A\sin(\omega t + \phi)$$
$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -\omega^2 A\cos(\omega t + \phi)$$

11 / 16 / 2010, P2211K

So how do we get SHM?

- Basic answer: spring-like forces, *i.e.*, ones described by a linear restoring behavior--- F = -kx.
- Why is this important?
 - 1. SHM gives the most basic version of a *periodic* motion;
 - 2. The characteristic of a linear restoring force is a good approximation of more complex forces (one example is the simple pendulum);
 - 3. Chemical bonds, and thus their vibration behaviors, can be approximated by this type of force;
 - 4. The deflection (or bending) behavior of structural units (beams, etc.) can be described to a good approximation by these forces;
 - 5. etc.
- How do we know spring-like forces produce SHM? Look at the "F = ma" relation:

$$ma(t) = -kx(t) \Longrightarrow m \frac{d^2 x(t)}{dt} = -kx(t) \Longrightarrow \frac{d^2 x(t)}{dt} + \left(\frac{k}{m}\right)x(t) = 0$$

For this type of differential equation, the general solution is

$$x(t) = Asin(\omega t) + Bcos(\omega t)$$
 with $\omega^2 = \frac{k}{m}$

(A and B are amplitude parameters determined by the initial conditions.)

• Thus, this demonstrates that SHM is the result of the linear restoring force.

Dynamics of SHM

$$x(t) = A\cos(\omega t + \phi)$$

$$v(t) = \frac{dx}{dt} = -\omega A\sin(\omega t + \phi)$$

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -\omega^2 A\cos(\omega t + \phi)$$

- From the relations for x(t), v(t), and a(t), we see that the maximum displacement is A, the maximum speed is ωA, and the maximum acceleration is ω²A. Furthermore, from the relations between sin and cos functions, the maximum displacement occurs when the speed is zero, and the maximum speed occurs when the displacement is zero.
- Also, we know from previous discussions that the spring-mass system is *conservative* so that

 $\Delta K + \Delta U - 0 \Longrightarrow E_T - \frac{1}{2}mv^2 + \frac{1}{2}kx^2$ and that

$$E_T = \frac{1}{2}mx_{max}^2 = \frac{1}{2}kA^2$$

or
$$E_T = \frac{1}{2}mv_{max}^2 = \frac{1}{2}m\omega^2 A^2$$

11 / 16 / 2010, P2211K

Problem 14-13. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz. At t = 0, the mass is at x = 5.0 cm and has $v_x = -30.0$ cm/s. Determine:

- a. The period. T = 1/f = 0.5 sec
- b. The angular frequency. $\omega = 2\pi f = 12.57$ rad/s
- c. The amplitude. $E_T = \frac{1}{2}kA^2$; Need k = m $\omega^2 = 31.6$ N/m & $E_T = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = 0.0485$ J, so $A = (x^2 + mv^2/k)^{\frac{1}{2}} = (x^2 + v^2/\omega^2)^{\frac{1}{2}} = 5.54$ cm d. The phase constant. $x(t) = A\cos(\omega t + \phi)$, so $x(0) = A\cos(\phi)$ &
- e. The maximum speed. $\phi = \cos^{-1}[x(0)/A] = \cos^{-1}[5/5.54] = 25.5^{\circ} = 0.445$ rad $E_T = \frac{1}{2}m(v_{max})^2$, so $v_{max} = (2E_T/m)^{\frac{1}{2}} = 69.6$ cm/s also, $v_{max} = A \omega$
- f. The maximum acceleration. $a_{max} = \omega^2 A = 875.3 \text{ cm/s}^2$
- g. The total energy. $E_T = 0.0485 \text{ J}$
- h. The position at t = 0.40 s. $x(0.40) = 5.54\cos(12.57 * 0.04 + 0.445)$ cm = 3.23 cm

Energy in Simple Harmonic motion (SHM):

• Review Example 14.5, p. 419

Dynamics of SHM:

• Review Example 14.6, pp. 422-423

Vertical Oscillations: How does g affect things?

- No effect on frequency
- Shifts x = 0 position by x = mg / k

The simple pendulum: how does it execute SHM?

• For SHM, ma = $-kx = md^2x/dt^2$

- This has the form: $d^2g/dt^2 = -(k/m)g$, where *g* represents a coordinate [such as linear position (x), arc length (s), angular position (θ), etc.] and leads to $\omega^2 = k/m$.
- For the simple pendulum (as discussed in section 14.5, pp. 425-426), the force law, with s = Lθ and the small-angle approximation that sinθ ~ θ, becomes mL(d²θ/dt²) = ~ -mgθ, which has the form d²θ/dt² = ~ (g/L)θ.
- Thus, by comparison with the spring-mass system, $\omega^2 = g/L$.
- Alternately, we can note that the potential energy for the exact SHM system has the form $U = \frac{1}{2}kx^2$, which is a parabola. For the pendulum, $U_g = mgL(1-\cos\theta)$, which is a circle. A circle ~ a parabola for small θ .

Damped harmonic motion:

- Basic idea: when set into "motion," the oscillations will continue until the energy is removed (or dissipated).
- Typical damping is proportional to speed (or the 1st derivative of the generalized coordinate *g* mentioned before).
- "Damping" removes the vibrational energy.

http://www.lon-capa.org/~mmp/applist/damped/d.htm

Driven oscillations:

- Basic idea: all objects have a "natural frequency" and a damping factor
- Energy can be put into the system @ the natural frequency.
- If the damping is low enough that the energy put in is more than that taken out by damping, the vibrational amplitude will build up, possibly to catastrophic levels.

http://www.walter-fendt.de/ph14e/resonance.htm

Driven harmonic motion—voice breaking glass: <u>http://www.youtube.com/watch?v=eTWDEsGIPO8&NR=1&feature=fvwp</u> 1:30 <u>http://www.youtube.com/watch?v=IZD8ffPwXRo&feature=related</u> 1:42

Driven harmonic motion—Tacoma Narrows bridge: http://www.youtube.com/watch?v=j-zczJXSxnw

Ch. 15: Fluids & elasticity

• *Fluids*: fluids are not rigid and "can take on the shape of their container." Gases & liquids are obvious examples. An important characteristic of many liquids is that they are (nearly) incompressible—examples are water and hydraulic fluids.

 $F_{up} > F_{down}^{*}$ because the pressure is greater at the bottom. Hence the 1 fluid exerts a net upward force.

- Pressure: P = force / area = F/A; Units = N/m² (1 N/m² = 1 Pa); lb/in²; mm Hg (1 mm Hg = 1 Torr); cm H₂O; etc
- (mass) Density: ρ = mass / volume = M / V; units = kg/m²; g/cm³, kg/liter; g/ml, etc. (1 ml = 1cm³ = 1cc)
- Pressure at a depth in a fluid—is due to the weight of the fluid above it: Above the space of area A is a column of fluid with height d (the depth); the weight of this column is Mg = ρ(Ad)g, which leads to P = F/A = Mg/A = ρgd
- Archimedes's principle, buoyancy, and floating—arise from the pressure-at-a-depth result: for any 3-dimensional object, the pressure at its bottom, which is at a greater depth, is larger than the pressure at its top.
- The expression for the buoyant force: At the bottom, the pressure is ρgd_{bottom} , at the top it is ρgd_{top} , and their difference is $\Delta P = \rho g(d_{bottom} d_{top})$. $(d_{bottom} d_{top}) =$ height of the object. Multiplying both sides by A gives the net force $F_{net} = \Delta P(A) = \rho gA$ height. Because A*height is the volume of the object, this becomes $F_{buoyant} = \rho gV_{obj} = \rho gV_{disp}$, where v_{disp} is the volume of fluid displaced.

- Pressure in fluids & <u>Pascal's Principle</u>: "A change in pressure at one point in an incompressible fluid appears undiminished at all points in the fluid."
- Hydraulics: come from application of Pascal's principle

- In the situation sketched to the side, applying force F_1 to the piston of area A_1 creates pressure $P = F_1/A_1$. This is "transmitted" to the other piston of area A_2 to create force $F_2 = PA_2 = (F_1/A_1)A_2 = F_1(A_2/A_1)$. Obviously, if $(A_2/A_1) > 1$, then $F_2 > F_1$. $(F_2/F_1 = A_2/A_1)$ is the "mechanical advantage" of the system.)
 - However, to accomplish this, the smaller piston must "pump" a volume of fluid into the larger cylinder $V = d_2A_2$. To do so, the smaller piston must move $d_1 = V/A_1 = d_2(A_2/A_1)$, which is greater than d_2 by the same ratio that F_2 is greater than F_1 .
- If the two pistons are not at the same level $(h_2 \neq h_1)$, and this naturally occurs when they move, then there is a pressure difference on both sides due to the "pressure-at-a-depth" result: $\Delta P = \rho_{fluid}(h_2 - h_1)g$. Holding an object with the pistons at different heights requires adding this pressure to the lower piston.
- Work through example 15.7 on page 455.

Assignment:

- Review Chapter 13 with a focus on the more general form for gravitational potential energy and the "escape velocity," section 13-5.
- Read Chapters 14 & 15
- Begin Reading Chapter 16