P2211K
 11 / 04 / 2010

Newton's law of gravity, gravitational potential energy, and "escape speed":

- Newton's "law" of gravity, as introduced in chapter 6, is:

$$
F_{1 o n 2}=F_{2 o n 1}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- For an object of mass \boldsymbol{m} acted upon by the earth's gravitational field, this becomes:

$$
F_{g}=\left(G \frac{M_{E}}{r^{2}}\right) m=m g(r)
$$

At the surface of the earth, this becomes

$$
\begin{aligned}
& F_{g}=\left(G \frac{M_{E}}{R_{E}^{2}}\right) m=m g\left(R_{E}\right) \text {, where } \\
& g\left(R_{E}\right)=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The concept of a "field":

- The expression for Newton's law of gravitation can be reorganized to focus on \boldsymbol{m}_{1} as the "source" and $\boldsymbol{m}_{\mathbf{2}}$ as the "recipient" of the effect:

$$
F_{1 o n 2}=\left(G \frac{m_{1}}{r^{2}}\right) m_{2}=Z_{1}(r) m_{2}
$$

- In this arrangement, $\mathbf{Z}_{1}(r)$ is the "effect" generated by \boldsymbol{m}_{1} that leads to the force experienced by \boldsymbol{m}_{2}.
- Obviously, if $\boldsymbol{m}_{\boldsymbol{2}}$ is moved to other locations, it would "feel" a force due to \boldsymbol{m}_{1} at all of them as described by the force law. Thus, \boldsymbol{m}_{1} sets up an effect that exists at all space positions regardless of whether or not there is a "recipient" mass to experience the force it creates. This "effect," described by $\mathbf{Z}_{1}(\mathbf{r})$, is the gravitational field associated with \boldsymbol{m}_{1}. From this perspective, the force on $\boldsymbol{m}_{\boldsymbol{2}}$ is the result of its interaction with the gravitational field at its location.
- Just as obviously, the field concept also applies to \boldsymbol{m}_{2} : it sets up a gravitational field and \boldsymbol{m}_{1} experiences a force as a result of its interaction with $\boldsymbol{m}_{\boldsymbol{2}}{ }^{\prime} \boldsymbol{s}$ field.

Questions:

- If $\boldsymbol{m}_{\boldsymbol{1}}$ "wiggles" what is the effect on $\boldsymbol{m}_{\boldsymbol{2}}$, and how long does it take for $\boldsymbol{m}_{\boldsymbol{2}}$ to "know"?

Gravitational potential energy (and "escape" speed):
Question: What minimum initial speed at the surface of the earth is necessary for a projectile to "escape" the earth's gravitational field?

- Basic Idea: the minimum escape speed is that which will lead to $\boldsymbol{v}_{\boldsymbol{f}}=\mathbf{0}$ as $\boldsymbol{r} \rightarrow \infty$.
- Speed suggests kinetic energy, and we already know about gravitational potential energy near the surface of the earth. Thus, if we can develop a more general description of the earth's gravitational potential energy, we can use conservation of energy methods to find the minimum $v_{\text {escape }}$.
- From the discussion in section 13.5 (p. 394), we learn that the expression for gravitational potential energy is

$$
U_{g}(r)=-G \frac{M_{E}}{r} m
$$

- Note that r is in the denominator so that \boldsymbol{U}_{g} goes to 0 as r goes to infinity. Thus, the final values for both the kinetic and potential energies is zero, meaning that the total energy at the end is zero: $\boldsymbol{E}_{T f}=\boldsymbol{K}_{f}+\boldsymbol{U}_{\boldsymbol{f}}=\mathbf{0}$.
- Therefore, from the conservation of energy principle that $E_{T f}=E_{T j}$, we conclude that $E_{T i}=K_{i}+U_{i}=\mathbf{O}$ and that $K_{i}=-\boldsymbol{U}_{i}$. Re example 13.2 (p. 396), the result is that

$$
\begin{aligned}
& \frac{1}{2} m v_{\text {escape }}^{2}=G \frac{M_{E}}{R_{E}} m \Rightarrow v_{\text {escape }}^{2}=2\left(G \frac{M_{E}}{R_{E}}\right)\left(\frac{R_{E}}{R_{E}}\right)=2\left(G \frac{M_{E}}{R_{E}^{2}}\right) R_{E}=2 g R_{E} \\
& \text { Thus, } \\
& v_{\text {escape }}=\sqrt{2 g R_{E}}=11.174 \times 10^{3} \mathrm{~m} / \mathrm{s} \simeq 22,000 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

Gravitational potential energy near the earth's surface:

- When we first introduced it, we described gravitational potential energy as $\boldsymbol{U}_{\boldsymbol{g}}=\boldsymbol{m g} \boldsymbol{h}$. So, how is this compatible with the more general description above?
- Approach: Using the more general relation, consider the difference in potential energy for a position at the earth's surface and one $h\left(\ll R_{E}\right)$ above it:

$$
\begin{aligned}
U_{g}\left(R_{E}+h\right)-U_{g}\left(R_{E}\right) & =-G \frac{M_{E}}{R_{E}+h} m+G \frac{M_{E}}{R_{E}} m \\
& =G M_{E}\left(\frac{1}{R_{E}}-\frac{1}{R_{E}+h}\right) m \\
& =G M_{E}\left[\frac{R_{E}+h-R_{E}}{R_{E}\left(R_{E}+h\right)}\right] m \\
& =G M_{E}\left[\frac{h}{R_{E}\left(R_{E}+h\right)}\right] m \\
& \simeq h\left[\frac{G M_{E}}{R_{E}^{2}}\right] m, \text { for } R_{E} \gg h \\
& =m g h
\end{aligned}
$$

- Thus, for the case where the distance from the earth's surface is small compared to its radius, the more general version reduces to the simpler one we used previously.

Oscillations, vibrations, and simple harmonic motion (SHM)
Definition of SHM: Sinusoidal (or cosine) oscillations

Functional form: $x(t)=A \cos (\omega t+\varphi)$, where

$$
x(t)=\text { position }
$$

$\omega=$ angular frequency (radians $/ s$) $=2 \pi f$ $\mathrm{f}=$ frequency in Hertz (Hz)
A = amplitude
$\varphi=$ phase (to come later)
Other relations:
$\mathrm{f}=$ frequency $=$ repetitions $/$ time
T = Period = time / repetition
$T=1 / f$

- Note that the motion has gone through one complete cycle when $\omega t=2 \pi$. Thus the functional form can be rewritten in many forms:

$$
x(t)=A \cos (\omega t+\phi)=A \cos (2 \pi f t+\phi)=A \cos \left(\frac{2 \pi t}{T}+\phi\right)
$$

- Also, note that velocity and acceleration are related to position by

$$
\begin{aligned}
& x(t)=A \cos (\omega t+\phi) \\
& v(t)=\frac{d x}{d t}=-\omega A \sin (\omega t+\phi) \\
& a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \cos (\omega t+\phi)
\end{aligned}
$$

So how do we get SHM?

- Basic answer: spring-like forces, i.e., ones described by a linear restoring behavior--- F = -kx.
- Why is this important?

1. SHM gives the most basic version of a periodic motion;
2. The characteristic of a linear restoring force is a good approximation of more complex forces (one example is the simple pendulum);
3. Chemical bonds, and thus their vibration behaviors, can be approximated by this type of force;
4. The deflection (or bending) behavior of structural units (beams, etc.) can be described to a good approximation by these forces;
5. etc.

- How do we know spring-like forces produce SHM? Look at the "F = ma" relation:

$$
m a(t)=-k x(t) \Rightarrow m \frac{d^{2} x(t)}{d t}=-k x(t) \Rightarrow \frac{d^{2} x(t)}{d t}+\left(\frac{k}{m}\right) x(t)=0
$$

For this type of differential equation, the general solution is
$x(t)=A \sin (\omega t)+B \cos (\omega t) \quad$ with $\omega^{2}=\frac{\boldsymbol{k}}{\boldsymbol{m}}$
(A and B are amplitude parameters determined by the initial conditions.)

- Thus, this demonstrates that SHM is the result of the linear restoring force.

Dynamics of SHM

$$
\begin{aligned}
& x(t)=A \cos (\omega t+\phi) \\
& v(t)=\frac{d x}{d t}=-\omega A \sin (\omega t+\phi) \\
& a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \cos (\omega t+\phi)
\end{aligned}
$$

- From the relations for $x(t), v(t)$, and $a(t)$, we see that the maximum displacement is A, the maximum speed is ωA, and the maximum acceleration is $\omega^{2} A$. Furthermore, from the relations between sin and cos functions, the maximum displacement occurs when the speed is zero, and the maximum speed occurs when the displacement is zero.
- Also, we know from previous discussions that the spring-mass system is conservative so that

$$
\Delta \boldsymbol{K}+\Delta \boldsymbol{U}=\boldsymbol{0} \Rightarrow \boldsymbol{E}_{T}=\frac{1}{2} \boldsymbol{m} v^{2}+\frac{1}{2} \boldsymbol{k} \boldsymbol{x}^{2}
$$

and that

$$
\boldsymbol{E}_{T}=\frac{1}{2} \boldsymbol{m} \boldsymbol{x}_{\max }^{2}=\frac{1}{2} \boldsymbol{k} \boldsymbol{A}^{2}
$$

or

$$
\boldsymbol{E}_{\boldsymbol{T}}=\frac{1}{2} \boldsymbol{m} \boldsymbol{v}_{\max }^{2}=\frac{1}{2} \boldsymbol{m} \omega^{2} \boldsymbol{A}^{2}
$$

Problem 14-13. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz . At $t=0$, the mass is at $x=5.0 \mathrm{~cm}$ and has $\mathrm{v}_{\mathrm{x}}=-30.0 \mathrm{~cm} / \mathrm{s}$. Determine:
a. The period.

$$
\mathrm{T}=1 / \mathrm{f}=0.5 \mathrm{sec}
$$

b. The angular frequency.
$\omega=2 \pi f=12.57 \mathrm{rad} / \mathrm{s}$
c. The amplitude.
$E_{T}=1 / 2 k A^{2}$; Need $k=m \omega^{2}=31.6 \mathrm{~N} / \mathrm{m}$ \&

$$
E_{T}=1 / 2 k x^{2}+1 / 2 m v^{2}=0.0485 \mathrm{~J} \text {, so }
$$

$$
A=\left(x^{2}+m v^{2} / k\right)^{1 / 2}=\left(x^{2}+v^{2} / \omega^{2}\right)^{1 / 2}=5.54 \mathrm{~cm}
$$

d. The phase constant. $x(t)=A \cos (\omega t+\varphi)$, so $x(0)=A \cos (\varphi) \&$

$$
\varphi=\cos ^{-1}[x(0) / A]=\cos ^{-1}[5 / 5.54]=25.5^{\circ}=0.445 \mathrm{rad}
$$

e. The maximum speed. $\quad E_{T}=1 / 2 m\left(v_{\max }\right)^{2}$, so $v_{\max }=\left(2 E_{T} / m\right)^{1 / 2}=69.6 \mathrm{~cm} / \mathrm{s}$ also, $v_{\text {max }}=A \omega$
f. The maximum acceleration. $\mathrm{a}_{\max }=\omega^{2} \mathrm{~A}=875.3 \mathrm{~cm} / \mathrm{s}^{2}$
g. The total energy. $\quad E_{T}=0.0485 \mathrm{~J}$
h. The position at $t=0.40 \mathrm{~s} . \quad x(0.40)=5.54 \cos (12.57 * 0.04+0.445) \mathrm{cm}$ $=3.23 \mathrm{~cm}$

Assignment:

- Continue reading and working on Chapter 12; especially you should review the book's worked-out examples.
- Begin reading Chapter 13 with a focus on the more general form for gravitational potential energy and the "escape velocity," section 13-5.

