
P2211K
10 / 26 / 201010 / 26 / 2010

10 / 26 / 2010, P2211K



Chapter 12:  A more realistic view of objects and their motion—rigid bodies  
• Objects have extent—i.e., they are not simply points
• In general, the motion of real objects is a combination of translation (our focus up to 

now) and rotation.

• To describe this motion, we need to introduce several new concepts: center of mass, 
moment of inertia (or rotational inertia), torque, and angular momentum;

• We will describe rigid-body dynamics from two perspectives: work-energy and 
torque (obviously, these are inter-related and equivalent from a technical standpoint);

• We will work with rigid-body equilibrium problems—these need to add torque to the• We will work with rigid-body equilibrium problems—these need to add torque to the 
equilibrium condition;

• We will extend the rigid-body dynamics discussion to the description of rolling 
motion;
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• We (probably) will introduce the cross-product, which is another way to multiply 
vectors.



• “Rigid bodies” are objects made up of a collection of “points stuck together” in such a 
way that that “Rigid bodies” are objects made up of a collection of “points stuck 
together” in such a way that the object’s size and shape do not change as it moves—
think a steel disk, etc.  (Obviously, even a steel disk can vibrate as it moves and many 
objects are “soft” bodies, but their description adds complexity that must wait for 
another day.)

So how do we describe the kinematics and dynamics of rigid bodies?  Obviously, by 
considering both translation and rotation, but the 1st question is how can we simplify this 
when the stuck-together pieces are moving in what appears to be a complicated way?when the stuck together pieces are moving in what appears to be a complicated way?
• 1st idea: the combined motion can be described a translation of the center of mass 

plus rotation about the center of mass.  
• So, what is the center of mass?  This basically is the idea of a “balance point,” which 

probably is familiar to you from your playground days and see-saws.
• 2nd idea: we need to know how mass enters into the dynamics of rotation (energy, 

work, causes, etc.), and this leads to the idea of rotational inertia.
• So what is rotational inertia (or moment of inertia)? We’ll see but it has to do with• So, what is rotational inertia (or moment of inertia)?  We ll see, but it has to do with 

the amount of mass and how it is distributed relative to the center of mass (or axis 
of rotation).
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Center of Mass:  
• For example in the figure M1 is 4 times as massive as M2 so you know instinctivelyFor example, in the figure, M1 is 4 times as massive as M2, so you know instinctively 

that the balance point needs to be closer to M1 than M2.  (This intuition also includes 
the concept of torque & equilibrium that we’ll consider before we finish this chapter.)  
In fact, we know that xcm can be calculated by the relation

(2 0 k ) (0 5 k )(0 5 ) th t 0 1(2.0 kg) xcm = (0.5 kg)(0.5m – xcm) so that xcm= 0.1 m
• This two-element system suggests the more general 

approach for a system with a larger number of 
elements lying in a plane (but not a straight line).  This 
is given by the book’s equation 12-4, shown below.
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Actually, rigid bodies are better described as continuous objects rather than a 
collection of discrete mass points. Doing so translates the summation of eq. 12-4 
t th i t ti d b 12 5 I 12 5’ t dto the integration expressed by eq. 12-5.  In 12-5’s separate xcm and ycm
expressions are combined into a single vector expression for rcm, the result is as 
expressed below:

1
cm

object

1r  =  rdm
M ∫

• Consider for example the rectangular shape of
+y

• Consider, for example, the rectangular shape of 
dimensions a×b and total mass M.

• In the integrals, dm is a differential mass element (an 
amount approaching zero without being zero) easily 
related to the total mass of the object (M) and its total+x

b

ˆ ˆr = x + yi j

dm

related to the total mass of the object (M) and its total 
area  (Area), thus, for uniformly distribured mass, the 
mass / area is the same for all pieces of the object 
ranging from the whole thing down to a differential 
element of area

a

yj

element of area.
• Thus, the mass in a differential area element of dimensions dx by dy is

dm M dm M=  = dm = dxdy
dArea ab dxdy ab

⎛ ⎞⇒ ⎜ ⎟
⎝ ⎠
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• With this expression for dm and its relation to the origin as given by   , the 
integral for the whole object becomes:

r

( )ˆ ˆ

cm
object

1r  =  rdm
M

1 Mx + y dxdy⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫∫ i j( )
&

0 0 0 0

ˆ ˆ

x y

y b y bx a x a

y x x y

x y dxdy
M ab

1= dy (x )dx dx (y )dy
ab

= == =

= = = =

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ +⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

⎡ ⎤

∫∫

∫ ∫ ∫ ∫

i j

i j

ˆ ˆ ˆ ˆ
2 21 a b a bb  + a  =  + 

ab 2 2 2 2
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
i j i j

• So, the position of the cm for this symmetrical object with uniformly-distributed , p y j y
mass is at its geometric midpoint---big surprise!!!

• (By the way, the double integrals above are equivalent to the book’s eq. 12-5 if 
their dm for the x-integral is that of a strip parallel to the y axis of width dx and 
length b; for the y-integral, the strip is parallel to x with width dy and length a.)g ; y g , p p y g )
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• Now, if we cut a chunk out of the rectangular piece, what 
will be the cm of the remainder?  
If th i ith th h k i l i l d if th

+y

a/2
• If the piece with the chunk in place is regular ,and if the 

chunk also is regular, then this is most easily accomplished 
by taking advantage of the fact that operations for 
calculating the cm are additions (an integral is an addition); 

ifi ll

+x

b
b/2

specifically:a
From the book's eq. 12 -5, the cm of  the two pieces as a unit is :

cm cmM1 M2
cm M1+M2

M1r  + M2r
r  = 

M1+ M2

F th l h th i t t i ¼ f th t t l d i th ti t

( )
thus, from algebraic manipulation, the cm of  the piece with the missing chunk is :

cm M1+
cm M1

M1+ M2 r
r = cmM2 M2

 M2r
M1

−

• For the example shown, the piece cut out is ¼ of the total and is the section at 
the upper right shaded in blue.  In this case, we know the cm for the “whole 
piece,’ and we can easily write the cm of the regular chunk to be removed.  Thus:

( ) 1
cm cm4M1+M2 M2

M r  Mr−( )M1+ M2 r M2r− ( )

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ 

M1+M2 M2
cm M1 3

4

31 1
2 4 4

3
4

r =
M

M a  + b  M a  + b
=

M

−i j i j

( )

( ) ( )
M1 + M2 = M, M1 = M,  M2 = M, 

ˆ ˆ ˆ ˆ=  and  = , so

cm cmM1+M2 M2
cm M1

3 1
4 4

31
cm cm2 4M1+M2 M2

M1+ M2 r  M2r
r =

M1

r a  + b r a  + bi j i j
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Rotational kinetic energy:

R i d

21
rot i i2

all i
K  =  m v∑

Reminder: 

arc lengthangular position:       =   (radians)
radius 

d

θ

θ t 

distance = arc length:      s = r  
ds dtangential speed:             v =   = r  = r
dt dt

θ
θ ω

2

dangular velocity:        =             (radians/s)
dt
dangular acceleration:  =             (radians/s )
dt

θω

ωα

t 
t 

dt dt
dv dtangential acceleration:   a =   = r = r
dt dt

ω α

Krot is conveniently related to angular velocity as follows:

( ) 2 22 21 1 1K = m v m r m rω ω⎛ ⎞= = ⎜ ⎟∑ ∑ ∑( )rot i i i i i i2 2 2
all i all i all i

K    m v m r m rω ω= = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑

• Based on this, the moment of inertia or (rotational 
inertia), symbolized by I, is defined as follows:

22 1
i i rot 2

all i
I  m r ,  so that K  Iω= =∑

• Because of the ri dependence, I depends on the distribution of mass AND on 
the specific axis of rotation
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the specific axis of rotation.



Examples:
a Find the center of mass (relative to M2) for the two-mass object;a. Find the center of mass (relative to M2) for the two mass object;

b Find I for rotation about the midpoint (R/2);

1
cm

1 2

mr = R
m +m

⎛ ⎞
⎜ ⎟
⎝ ⎠

b. Find I for rotation about the midpoint (R/2);

c Find I for rotation about M1;
r

( )
2

R/2 1 2
RI = m +m
4

c. Find I for rotation about M1;

d. Find I for rotation about M2;
1

2
m 2I = m R

2I R

e. Find r that gives the minimum I.   (Note that this is rcm !!!)

2

2
m 1I = m R

( ) ( )2 2 2 2 2
1 2 1 2I = m R - r m r = m R - 2Rr r m r+ + +( ) ( )

( ) ( )

( ) ( )
 

1 2 1 2

1 2

1
1 2 1

dI = 0 = m -2R 2r m 2r
dr

mr m m = Rm r = R

+ +

+ ⇒
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2 2
i i

For a continuous object,

I m r I r dm= ⇒ =∑ ∫i i
all i object

I  m r   I  r dm   

where r is the distance from mass element dm to the axis of rotation.

⇒∑ ∫

Example: For the uniformly distributed rectangular mass of dimensions a × b shownExample:  For the uniformly distributed rectangular mass of dimensions a × b shown 
below, calculate I for rotation about an axis perpendicular to the xy plane and 
passing through the origin.

( )

2
axis

object

2 2

I  =  r dm

M x + y dxdy
b

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫∫

+y

b
dm ( )

&

0 0 0 0

x y

y b y bx a x a
2 2

y x x y

3 3 2 2

ab

M= dy (x )dx dx (y )dy
ab

= == =

= = = =

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ +⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

∫∫

∫ ∫ ∫ ∫
+x

a

ˆ ˆr = x + yi j•

3 3 2 2M a b a bb  + a  = M  + 
ab 3 3 3 3

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
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Questions  for the shape above:
a What is I for rotation abo t an a is perpendic lar to the plane and passing thro gh thea. What is I for rotation about an axis perpendicular to the xy plane and passing through the 

center of mass?  (Hint: it’s the same procedure as above with the limits to the integrals 
changed so that –a/2 ≤ x ≤ a/2 and –b/2 ≤ y ≤ b/2.)

b. What is I for rotation about the x axis?
Wh t i I f t ti b t th i ?c. What is I for rotation about the y axis?

Other properties of I:
• I is least for rotations about an axis passing through the center of mass;
• Parallel axis theorem: for rotation about an axis parallel to one passing through the 

center of mass, 
Iaxis = Icm +MR2,

where M is the total mass of the object and R is the distance between the axis and one j
through the cm.

• Addition and subtraction of I:  The total I for a collection of objects rotating about the 
same axis is the sum of the I’s for each about the axis:

Iaxis T = Iaxis 1 + Iaxis 2 + Iaxis 3 + …Iaxis,T  Iaxis,1  Iaxis,2  Iaxis,3  …
• Similarly, the rotational inertia of an object with a missing piece can be calculated by 

subtraction.  (This is useful when it is easier to calculate Iaxis,T and Iaxis,2 than to calculate 
Iaxis,1 directly.)

I =I - I
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Iaxis,1 =Iaxis,T - Iaxis,2



Rotational Inertia of some standard shapes about typical axes (p. 347 in book):
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Prob 12-70 (sort of):The two blocks in the figure are connected by a massless rope that 
passes over a pulley. The pulley is 12 cm in diameter, has a mass of 2.0 kg, and hasp p y p y g
rotational inertia like a solid disk. The rope does not slip on the pulley and the pulley 
rotates on its axle without friction.
• If the blocks are released from rest, what is the speed of the 4.0 kg block as it 

reaches the floor?reaches the floor?
• How long does it take to reach the floor?

• Basic principle: ΔKT = WT

• ΔK4 + ΔK2 + ΔKP = Wg4 + Wg2ΔK4  ΔK2 ΔKP  Wg4 Wg2

• ½M4v2 + ½M2v2 ½Iω2 = M4gh - M2gh
• String doesn’t slip → v = ωrpulley

• Solid disk → I = ½Mpulley(rpulley)2So d d s ½ pulley( pulley)
• Putting it together:  (vf)2 = (40/7)(m/s)2 → vf = 2.39 m/s
• Need acceleration to get the time; can assume acc. is 

constant, so a = (vf)2 / 2h = 20/7 m/s2.  t = (2h/a)½ = 0.84 s
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To come:To come:
• Rigid body equilibrium;
• Cross product of vectors;
• Angular momentum;

Assignment:Assignment:   
• Continue reading and working on Chapter 12, 

especially the topics above.
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