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Dynamics in 2 dimensions:  (Chapter 8)
P j til ti h th f ti i dditi t it• Projectile motion when there are forces acting in addition to gravity;

o Effect on range  (p. 211)
o Effect on trajectory  (p. 212)

• Uniform circular motion (Sections 8.2 – 8.6, pp. 212-226( , pp
o Dynamics and forces necessary  (pp. 214 – 219)
o Circular orbits & gravity  (pp. 219 – 221)
o “Vertical” circular motion  (223-226)

“C t if l” f ( 222)o “Centrifugal” force  (p. 222)
• Non-uniform circular motion  (Section 8.7, pp. 226-227)

10 / 05 / 2010, P2211K



• Projectile motion when there are forces acting in addition to gravity;
o Effect on range  (p. 211)

Horizontal forces (such as wind, air resistance, etc.) will reduce the range (if 
they are opposite the direction of motion—headwinds, air resistance, etc.) or 
they will extend it (tail winds, etc).   Describing these is complex and we 
don’t need to go into them in this course. 

o Effect on trajectory  (p. 212)
Likewise, additional forces will distort a projectile’s trajectory from the 
parabola that results when only gravity acts.  A complete description of these 
effects requires knowledge of the additional forces and the use of 
mathematical / computational techniques beyond those required here.
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Uniform circular motion (Sections 8.2 – 8.6, pp. 212-226)
B i i t h bj t i d th t l t th• Basic point: whenever an object moves in a curved path, at least the 
direction of its velocity changes.  Thus, the object experiences acceleration 
(because velocity is a vector), and acceleration requires a net force.

• Uniform circular motion is the special case when the speed remains 
constant (“uniform”) but the path is a circle (of radius r).  (Re. class notes 
from 9/9/2010.)

• Characteristics of uniform circular motion, a reminder:  
o the path is a circle;o the path is a circle; 
o the magnitude of the velocity remains constant but its direction continuously 

changes and remains tangent to the path (or perpendicular to the radius);
o the magnitude of the acceleration remains constant but its direction changes and 

remains directed towards the center of the path (centripetal).remains directed towards the center of the path (centripetal).
2
t

c

c

va  = , where
r

a  = centripetal acceleration
v = tangential speed

• Thus, for an object of mass m to travel in a circular path at constant speed, 
it must be acted upon continuously by the net force of magnitude mac = 

tv  = tangential speed
r = radius of  the path
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p y y g c
m(v2 / r) that always is directed towards the path’s center.



Uniform circular motion and rotational motion:
• A particularly important type of 2 dimensional motion is that• A particularly important type of 2‐dimensional motion is that 
of an object in a circular path.   This is the starting point of 
discussions involving orbital motion, rotating objects, etc.

• Because the path is a circle it is convenient to describe its 
hˆ ˆ( θi + i θj)instantaneous position as    as shown in 

the sketch to the left.

• It is convenient to introduce the measure of θ in radians as

r = r(cosθi + sinθj)

It is convenient to introduce the measure of θ in radians as 
defined by θ = arc / radius = s / r.  (For a full circle, the arc 
length is the circumference = 2πr and the angle is 2π radians.)

• Also, because the is moving in its path, the value of θ
constantly changes.  To describe this, it is convenient to 
introduce the angular speed in radians / sec, which isintroduce the angular speed in radians / sec, which is 
symbolized by ω. 
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• In its circular path, the object’s speed is v = ds/dt = d(rθ)/dt = r(dθ/dt = rω.  Thus, there 
i di t ti b t th l d d th bj t’ d i it this a direct connection between the angular speed and the object’s speed in its path.

• It is important to note that the object is accelerated even though its speed is constant—
its direction is changing and therefore its velocity is not constant.

• Because r is constant (the path is a circle), and for the case of constantω and v (uniformBecause r is constant (the path is a circle), and for the case of constant ω and v (uniform 
circular motion, the following relations connect the object’s position, velocity, and 
acceleration: ˆ ˆ

ˆ ˆ

r = r(cosωt i + sinωt j)
drv = = ωr(-sinωt i + cosωt j)

ˆ ˆ2

( j)
dt
dva = = ω r(-cosωt i - sinωt j)
dt

• Although it is not obvious without additional vector techniques (such as the dot 
product), the velocity and position vectors are perpendicular to each other.  This means 
that the velocity is tangent to the circular path because any vector perpendicular to the 
radius is a tangent (from basic geometry).

• It is obvious, however, that the acceleration is directed oppositely to the position 
vector; thus       points towards the center of the circular path.  In effect, the circular 
path is the result of a constantly changing velocity due to this centripetal acceleration.  
Note also that the acceleration in this case is not constant—its direction is constantly 

a
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Typical examples:
• A mass on the end of a string
• A car on a curve
• Orbital motion in gravity
• Water in a bucketWater in a bucket
• etc.

Example: A dad swings his 20 kg child in a 5 kg cart at the end of a 2 0 m ropeExample: A dad swings his 20 kg child in a 5 kg cart at the end of a 2.0 m rope
in a circle at the (tangential) speed 2.5 m/s. (The cart rolls on the ground
without friction.)

• Calculate the tension in the rope necessary to accomplish this.

T = m(v2/r) = (25 kg) (2.5 m/s)2 / 2.0 m = 78.13 N
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Example (re. example 8.4, pp. 216-217): A 1500 kg car travels on a curve of 50 mp ( p , pp ) g
radius on a level (or unbanked) road. The coefficient of static friction is 1.0
between the tires and road. (g = 10 m/s2)

• What is the maximum speed with which the car can take the curve?

fmax = μsn = 15000 N = m(v2 / r) = (1500 kg )(v2 / 50m)
v max = 22.4 m/s
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Example (re. example 8.5, pp. 217-218): A 1500 kg car travels on a curve of 70 m radius
( / 2)on a road banked at 15°. (g = 10 m/s2)

• What is the speed with which the car can take the curve?

• Basic ideas: Need a component of the force of contact to provide thep p
centripetal force to keep the car in the circular path. However, there is only
one value of the speed that will work: too slow & the car will “slide” down the
bank; too fast, and it will drift up the bank.
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Circular orbits & gravity  (pp. 219 – 221)
• This opens the general topic of central forces, which are forces always g y

directed towards a point central to the motion of any object under their 
influence. By their basic nature, central forces can provide an acceleration 
always directed towards the center of a circular path. (Gravitational and electrostatic 
forces are prime examples of central forces.  In general, central forces lead to trajectories described by 
“ i ti ” hi h i l d i l lli b l d h b l H b l if d“conic sections,” which include circles, ellipses, parabolas, and hyperbolas.  Hyperbolas occur if and 
only if the central forces are repulsive; e.g., for charged particles of like sign.) 
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Example of a circular orbit:  Communications satellites sometimes are launched 
so that they remain “parked” over a specific location on the surface of the earth.  
These also are called “geosynchronous” orbits ) (R = 6 37 x 106 m)These also are called geosynchronous  orbits.)  (RE = 6.37 x 10 m)

a. What is the radius of a geosynchronous orbit?

b. In a geosynchronous orbit, how high is the satellite above the surface of 
th th?the earth?

Analysis:
• To remain above the same point on 

the surface, the satellite must have 

22
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⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ an orbital period of exactly one day 

(24 h x 3600 s/h = 86,400 s).  
• Also, gravity at its orbital radius must 

exactly provide the centripetal force 
necessary for the circular orbit
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Also, at this altitude, the gravitational acceleration is
g(r ) = 0.221 m/s    (much different from 9.8 m/s  !!
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Thus, the satellite is acted on by gravity and actually is “falling” towards the earth! It 
is just that the tangential speed causes it to move sideways as it falls in exactly the
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is just that the tangential speed causes it to move sideways as it falls in exactly the 
right proportion to maintain the circular orbit at constant r.



“The moon is falling…! by Isaac Newton”

“In the year 1666 he retired again from Cambridge to his 
mother in Lincolnshire. Whilst he was pensively meandering 
in a garden it came into his thought that the power of gravity 
(which brought an apple from a tree to the ground) was not 
li it d t t i di t f th b t th t thilimited to a certain distance from earth, but that this power 
must extend much further than was usually thought. Why not 
as high as the Moon said he to himself & if so, that must 
influence her motion & perhaps retain her in her orbit, 
whereupon he fell a calculating what would be the effect of p g
that supposition.”
Stukeley, William. "Memoirs of Sir Isaac Newton's Life"
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“Vertical” circular motion  (223-226)
How is it possible to swing a water-filled bucket, with no lid, in a circular path so that g
it passes overhead with no water spilling?
Basic ideas:

• “Not spilling” means that the water must remain with the bucket as it goes 
through the path of the motionthrough the path of the motion.

• As the water & bucket pass overhead, the water “falls”  due to the gravitational 
effect.  However, if the centripetal acceleration required for circular motion is no 
less than the gravitational acceleration, the water will stay with the bucket and 

t ill t f itnot spill out of it.
• If the necessary centripetal acceleration equals g, the water is in free fall, but 

that is the same acceleration as the bucket so they stay together;
• If the necessary acceleration rate is greater than g the bottom of the bucketIf the necessary acceleration rate is greater than g, the bottom of the bucket 

“pushes” against the water with sufficient force to cause the water to accelerate 
with the bucket at the required rate;

• However, if the necessary centripetal acceleration rate is less than g, the water 
ill l t t d ill ill t f th b k t!!!will accelerate at g and will spill out of the bucket!!! 
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Th b k t f t & ti i ti l i lThe bucket of water & motion in vertical circles:

2

net

To move in a circle,
vF  = m , towards the center of  the circle at all times

In general, n and FG must combine (in a 
vector sense) to provide the necessary 
centripetal force. Because FG is constant net

2

net G

, f
r

Thus,
vF  = F  + n = m   
r

centripetal force.  Because FG is constant 
(down and equal to mg), the magnitude 
and direction of n is different at each point 
along the path.

min

Example : r = 1.0 m (an arm's length)

v  = gr = 3.2 m/s ⇒
2 2
min min

net G

Worst case : at the top of  the path
v vF  = F  = m = mg  = g

r r
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Assignment:Assignment:   
Begin reading and working on Chapter 9.
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