## P2211K

## 9/23/2010

## Continuing the focus on Newton's $2^{\text {nd }}$ Law: (Chapter 6)

- Models, approximations, \& variable forces
o Gravity: $F_{g}=G \frac{m_{1} m_{2}}{r^{2}}=m\left(G \frac{m_{E}}{R_{E}^{2}}\right)=m g$
o Friction: $\left\{\begin{array}{l}\mathfrak{I}_{s}<\mu_{s} N \text {, static friction } \\ \mathfrak{I}_{k}=\mu_{k} N \text {, kinetic friction } \\ \mathfrak{I}_{r}=\mu_{r} N \text {, rolling friction }\end{array}\right\}$, opposite to $\vec{v}$
o Air resistance---"drag": $\left\{\begin{array}{l}D_{A}=k v^{2}, \text { Air resistance; opposite to } \vec{v} \\ D_{W}=k v, \text { Water resistance; opposite to } \vec{v}\end{array}\right.$

Gravity:


$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}=m\left(G \frac{m_{E}}{R_{E}^{2}}\right)=m g
$$

So,

$$
g=\left(G \frac{m_{E}}{R_{E}^{2}}\right)
$$

- So how can we justify treating $g$ as a value independent of altitude (h) on the Earth?
- For us, $h=0$ is the surface of the earth, or at $r=R_{E}$.

The question becomes "what is the difference between g @ $R_{E}$ and $g @ R_{E}+h$ ?" [i.e., $\left.\Delta g=g\left(R_{E}+h\right)-g\left(R_{E}\right)\right]$ :
If $g=\left(G \frac{m_{E}}{R_{E}^{2}}\right)$, then $\quad\left(M_{E}=5.98 \times 10^{24} \mathrm{~kg}\right.$ and $\left.R_{E}=6.37 \times 10^{6} \mathrm{~m}\right)$
$\frac{d g}{d R_{E}}=-2 G \frac{m_{E}}{R_{E}^{3}}=\frac{-2}{R_{E}}\left(G \frac{m_{E}}{R_{E}^{2}}\right)=\left(\frac{-2}{R_{E}}\right) g$
$\Delta g$ when $\Delta R_{E}=h$ with $h \ll R_{E}$ :
$\frac{\Delta g}{\Delta R_{E}} \cong \frac{d g}{d R_{E}} \Rightarrow \Delta g \cong\left(\frac{d g}{d R_{E}}\right) \Delta R_{E}=\left(\frac{d g}{d R_{E}}\right) h=-2 g\left(\frac{h}{R_{E}}\right)$
e.g., for $h=100 \mathrm{~m}, \Delta g \cong-2 g\left(\frac{10^{2}}{6.37 \times 10^{6}}\right) \cong 3 \times 10^{-4} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cong 0$

$$
\text { Friction: } \quad\left\{\begin{array}{l}
\mathfrak{I}_{s}<\mu_{s} N, \text { static friction } \\
\mathfrak{J}_{k}=\mu_{k} N, \text { kinetic friction } \\
\mathfrak{I}_{r}=\mu_{r} N, \text { rolling friction }
\end{array}\right\} \text {, opposite to } \vec{v}
$$

Static: $\quad \vec{f}_{\mathrm{s}} \leq\left(\mu_{\mathrm{s}} n\right.$, direction as necessary to prevent motion)
Kinetic: $\vec{f}_{\mathrm{k}}=\left(\mu_{\mathrm{k}} n\right.$, direction opposite the motion $)$
Rolling: $\vec{f}_{\mathrm{r}}=$ ( $\mu_{\mathrm{r}} n$, direction opposite the motion)


Static friction is opposite the push to prevent motion.


Free-body diagram


Kinetic friction is opposite the motion.



[^0]Problem 6.20: A 4000 kg truck is parked on a $15^{\circ}$ slope. How much is the friction force on the truck?

- Note that the angle indicated by the arrow is $90-\theta$ so that $\mathrm{W}_{\|}=\mathrm{W} \cos (90-\theta)$. However, $\cos (90-\theta)=\sin \theta$, and $\mathrm{W} \sin \theta$ is the usual way of expressing $\mathrm{W}_{\|}$.


a. What is the acceleration of the object (file cabinet) when $\theta=20^{\circ}$ ?
b. What is its acceleration when $\theta=45^{\circ}$ ?
c. At what angle will it just begin to slide?


## Solutions:

a. What is the acceleration of the object (file cabinet) when $\theta=20^{\circ}$ ?

Will the object slip at all?
From the diagram, ma $_{\|}=F_{\text {net|| }}=f_{s}-F_{G \|}$
$\boldsymbol{f}_{s}=\mu_{s} \boldsymbol{N} \quad\left(\right.$ maximum $\left.\boldsymbol{f}_{s}\right)$
$\left.\begin{array}{l}\boldsymbol{N}=\boldsymbol{m} \boldsymbol{g} \cos \theta \\ \boldsymbol{F}_{G \|}=\boldsymbol{m} \boldsymbol{g} \sin \theta\end{array}\right\} \Rightarrow \boldsymbol{m} \boldsymbol{a}_{\|}=\boldsymbol{m} \boldsymbol{g}\left(\mu_{s} \cos \theta-\sin \theta\right)$
$\boldsymbol{a}_{\|}=\boldsymbol{g}\left(\mu_{s} \cos \theta-\sin \theta\right)=+4.09 \mathrm{~m} / \mathrm{s}^{2} \quad\left(\right.$ for $\left.\theta=20^{\circ}\right)$
Interpretation : $a_{\|}>0$ in this case means that Max. $f_{s}>F_{G \|}$
Thus the object does not slip and $a_{\|}=0$.
b. What is its acceleration when $\theta=45^{\circ}$ ?

From part a.), max. $\boldsymbol{f}_{s}=\mu_{s} \boldsymbol{m g} \cos \theta=282.8 \mathrm{~N}$ at $\theta=45^{\circ}$
Also, at $\theta=45^{\circ}, F_{G \|}=\boldsymbol{m g} \sin \theta=353.6 \mathrm{~N}\left(\boldsymbol{F}_{G \|}>\max \boldsymbol{f}_{s}\right)$
Thus, the object slips and the acceleration is determined by $\mu_{k}$ :
$\boldsymbol{a}_{\| \mid}=\boldsymbol{g}\left(\mu_{k} \cos \theta-\sin \theta\right)=-4.25 \mathrm{~m} / \mathrm{s}^{2}$ (" - " means $\boldsymbol{a}_{\|}$is down the bed)
c. At what angle will it just begin to slide?

Also, from a.), the object slips when $F_{G \|}>f_{s}$, or $\boldsymbol{m g} \boldsymbol{\operatorname { s i n }} \theta>\mu_{\mathrm{s}} \boldsymbol{m g} \boldsymbol{\operatorname { c o s }} \theta \Rightarrow \boldsymbol{\operatorname { t a n }} \theta>\mu_{\mathrm{s}}$

$$
\text { Air resistance---"drag": }\left\{\begin{array}{l}
D_{A}=k v^{2}, \text { Air resistance; opposite to } \vec{v} \\
D_{W}=k v, \text { Water resistance; opposite to } \vec{v}
\end{array}\right.
$$



Terminal speed is reached when the drag force exactly balances the
gravitational force: $\vec{a}=\overrightarrow{0}$.

Eq. 6.16 in the book (p. 168):
Drag $=1 / 4 \mathrm{Av}^{2}$ (an approximate model, but it applies for some typical cases)

$$
\begin{aligned}
& \vec{F}_{n e t}=\vec{D}+\vec{W} \quad\left(\vec{W}=\vec{F}_{g}\right) \\
& m a=m g-k v^{2} \text { (using down as }+ \text { ) }
\end{aligned}
$$

Note that a goes to 0 when the velocity rises enough:

$$
\begin{aligned}
& m a=0=m g-k v_{T}^{2} \\
& \text { Thus, } v_{T}=\sqrt{m g / k} \text { is the "terminal" speed }
\end{aligned}
$$

More on air resistance:

- We can see that the characteristic that Drag increases with speed logically leads to a maximum speed for an object acted on by other constant forces (such as gravity for "parachutes, etc., or vehicles with constant propulsion).
- However, how can we describe the velocity (or speed) of the object as it approaches the terminal velocity?

$$
m a=m g-k v^{2}
$$

Re-write $a$ as $\frac{d v}{d t}$ and divide by $m$ :

$$
\frac{d v}{d t}=g-\frac{k}{m} v^{2} \Rightarrow \frac{d v}{\left(g-\frac{k}{m} v^{2}\right)}=d t
$$

This can be solved for $v(t)$ by integration as follows:
$\int_{v_{0}}^{v(t)} \frac{d v}{\left(g-\frac{k}{m} v^{2}\right)}=\int_{0}^{t} d t$
(It is important to correlate the integral limits on both sides of the equation.
$v(t)$ is the velocity at time $t$, and $v_{0}$ is the initial value at $t=0$.)

## Assignment:

## Begin reading and working on Chapter 7.


[^0]:    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

