P2211K 9 / 23 / 2010

9 / 23 / 2010, P2211K

Continuing the focus on Newton's 2nd Law: (Chapter 6)

• Models, approximations, & variable forces

o **Gravity**:
$$F_g = G \frac{m_1 m_2}{r^2} = m \left(G \frac{m_E}{R_E^2} \right) = mg$$

• Friction:
$$\begin{cases} \mathfrak{T}_{s} < \mu_{s} N, \text{static friction} \\ \mathfrak{T}_{k} = \mu_{k} N, \text{kinetic friction} \\ \mathfrak{T}_{r} = \mu_{r} N, \text{rolling friction} \end{cases}, \text{ opposite to } \vec{v}$$

• Air resistance---"drag":
$$\begin{cases} D_A = kv^2, \text{ Air resistance; opposite to } \vec{v} \\ D_W = kv, \text{ Water resistance; opposite to } \vec{v} \end{cases}$$

Gravity:

$$F_{g} = G \frac{m_{1}m_{2}}{r^{2}} = m \left(G \frac{m_{E}}{R_{E}^{2}} \right) = mg$$

So,
$$g = \left(G \frac{m_{E}}{R_{E}^{2}} \right)$$

- So how can we justify treating g as a value independent of altitude (h) on the Earth?
- For us, h = 0 is the surface of the earth, or at r = R_E . The question becomes "what is the difference between g @ R_E and g @ R_E + h?" [i.e., $\Delta g = g(R_E+h) - g(R_E)$]:

If $g = \left(G\frac{m_E}{R_E^2}\right)$, then $\left(M_E = 5.98 \times 10^{24} kg \text{ and } R_E = 6.37 \times 10^6 m\right)$ $\frac{dg}{dR_E} = -2G\frac{m_E}{R_E^3} = \frac{-2}{R_E} \left(G\frac{m_E}{R_E^2}\right) = \left(\frac{-2}{R_E}\right)g$ $\Delta g \text{ when } \Delta R_E = h \text{ with } h \ll R_E :$ $\frac{\Delta g}{\Delta R_E} \cong \frac{dg}{dR_E} \Longrightarrow \Delta g \cong \left(\frac{dg}{dR_E}\right) \Delta R_E = \left(\frac{dg}{dR_E}\right)h = -2g\left(\frac{h}{R_E}\right)$ e.g., for h = 100 m, $\Delta g \cong -2g\left(\frac{10^2}{6.37 \times 10^6}\right) \cong 3 \times 10^{-4} \frac{m}{s^2} \cong 0$

 $\Im_s < \mu_s N$, static friction $\left\{ \mathfrak{S}_{k} = \mu_{k} N, \text{ kinetic friction} \right\}, \text{ opposite to } \vec{v}$ $\mathfrak{S}_{r} = \mu_{r} N, \text{ rolling friction} \right\}$ Friction:

Static: $\vec{f}_s \leq (\mu_s n, \text{ direction as necessary to prevent motion})$ Kinetic: $\vec{f}_k = (\mu_k n, \text{ direction opposite the motion})$ Rolling: $\vec{f}_r = (\mu_r n, \text{ direction opposite the motion})$

Materials	Static μ_{s}	Kinetic μ_k	Rolling $\mu_{\rm r}$
Rubber on concrete	1.00	0.80	0.02
Steel on steel (dry)	0.80	0.60	0.002
Steel on steel (lubricated)	0.10	0.05	
Wood on wood	0.50	0.20	
Wood on snow	0.12	0.06	
Ice on ice	0.10	0.03	

(6.15)

9 / 23 / 2010, P2211K

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Problem 6.20: A 4000 kg truck is parked on a 15° slope. How much is the friction force on the truck?

• Note that the angle indicated by the arrow is 90- θ so that $W_{\parallel} = W\cos(90-\theta)$. However, $\cos(90-\theta) = \sin \theta$, and $W\sin\theta$ is the usual way of expressing W_{\parallel} .

$$||: 0 = \vec{W}_{\parallel} + \vec{\Im} \Longrightarrow 0 = mg\cos(90 - \theta) - \Im$$
$$\Im = mg\cos(90 - \theta) = mg\sin\theta = (4000kg)(9.8 m/s^2)\sin 15^{\circ}$$
$$\Im = 10146N$$

Assignment: Read & work through Example 6.7, pp. 166-167

- a. What is the acceleration of the object (file cabinet) when θ =20°?
- b. What is its acceleration when θ =45°?
- c. At what angle will it just begin to slide?

Solutions:

a. What is the acceleration of the object (file cabinet) when θ =20°?

```
Will the object slip at all?

From the diagram, ma_{\parallel} = F_{net\parallel} = f_s - F_{G\parallel}

f_s = \mu_s N (maximum f_s)

N = mg \cos\theta

F_{G\parallel} = mg \sin\theta

a_{\parallel} = g(\mu_s \cos\theta - \sin\theta) = +4.09 \text{ m/s}^2 \text{ (for } \theta = 20^\circ)

Interpretation : a_{\parallel} > 0 in this case means that Max. f_s > F_{G\parallel}

Thus the object does not slip and a_{\parallel} = 0.
```

b. What is its acceleration when θ =45°?

From part a.), max. $f_s = \mu_s mg \cos\theta = 282.8 N \text{ at } \theta = 45^{\circ}$ Also, at $\theta = 45^{\circ}$, $F_{G\parallel} = mg \sin\theta = 353.6 N (F_{G\parallel} > max f_s)$ Thus, the object slips and the acceleration is determined by μ_k : $a_{\parallel} = g(\mu_k \cos\theta - \sin\theta) = -4.25 m/s^2$ ("-" means a_{\parallel} is down the bed)

c. At what angle will it just begin to slide?

Also, from a.), the object slips when $F_{G\parallel} > f_s$, or $mg \sin\theta > \mu_s mg \cos\theta \Rightarrow \tan\theta > \mu_s$

9 / 23 / 2010, P2211K

Air resistance---"drag": $\begin{cases} D_A = kv^2, \text{ Air resistance; opposite to } \vec{v} \\ D_W = kv, \text{ Water resistance; opposite to } \vec{v} \end{cases}$

Eq. 6.16 in the book (p. 168):

Drag= $\frac{1}{4}Av^2$ (an approximate model, but it applies for some typical cases)

$$\vec{F}_{net} = \vec{D} + \vec{W}$$
 ($\vec{W} = \vec{F}_g$)
 $ma = mg - kv^2$ (using down as +)

Note that a goes to 0 when the velocity rises enough:

$$ma = 0 = mg - kv_T^2$$

Thus, $v_T = \sqrt{\frac{mg}{k}}$ is the "terminal" speed

More on air resistance:

- We can see that the characteristic that Drag increases with speed logically leads to a maximum speed for an object acted on by other constant forces (such as gravity for "parachutes, etc., or vehicles with constant propulsion).
- However, how can we describe the velocity (or speed) of the object as it approaches the terminal velocity?

$$ma = mg - kv^{2}$$

Re-write *a* as $\frac{dv}{dt}$ and divide by *m*:
 $\frac{dv}{dt} = g - \frac{k}{m}v^{2} \Rightarrow \frac{dv}{\left(g - \frac{k}{m}v^{2}\right)} = dt$

This can be solved for v(t) by integration as follows:

$$\int_{v_0}^{v(t)} \frac{dv}{\left(g - \frac{k}{m}v^2\right)} = \int_0^t dt$$

(It is important to correlate the integral limits on both sides of the equation.

v(t) is the velocity at time t, and v_0 is the initial value at t = 0.)

Assignment: Begin reading and working on Chapter 7.