P2211K
 9/21/2010

These lead us to the discussion of interactions that "cause" acceleration, or Forces.

- For our working purposes, we need to know that
o Force "causes" an object to accelerate;
o The amount of acceleration is inversely proportional to the object's mass;
o Mass is proportional to weight, but is not the same thing as weight;
o Forces are vectors;
o The object's acceleration is the vector result of ALL forces acting it.
- Also, from the nature of Forces, we can conclude that
o If an object accelerates, the net force on it is non-zero;
o If the net force on an object is non-zero, it will accelerate.
- Newton's $1^{\text {st }}$ and $2^{\text {nd }}$ laws describe the quantitative nature of Forces:

General Principles

Newton's Third Law

Every force occurs as one member of an action/reaction pair of forces. The two members of an action/reaction pair:

- Act on two different objects.
- Are equal in magnitude but opposite in direction:

$$
\vec{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\vec{F}_{\mathrm{B} \text { on } \mathrm{A}}
$$

Action/
reaction,

Focus on Newton's $2^{\text {nd }}$ Law: (Chapter 6)

- Equilibrium—a special case when $\overrightarrow{\mathbf{F}}_{\text {net }}=0$:
- Action by constant forces leading to constant accelerations: $\overrightarrow{\mathbf{F}}_{\text {net }}=m \overrightarrow{\mathbf{a}} \neq 0$
- Another special case: weight \& elevators
- Models, approximations, \& variable forces
o Gravity: $\quad F_{g}=G \frac{m_{1} m_{2}}{r^{2}}=m\left(G \frac{m_{E}}{R_{E}^{2}}\right)=m g$
o Friction: $\left\{\begin{array}{l}\mathfrak{J}_{s}<\mu_{s} N \text {, static friction } \\ \mathfrak{J}_{k}=\mu_{k} N \text {, kinetic friction }\end{array}\right\}$, opposite to \vec{v}
o Air resistance---"drag": $\left\{\begin{array}{l}D_{A}=k v^{2}, \text { Air resistance; opposite to } \vec{v} \\ D_{W}=k v, \text { Water resistance; opposite to } \vec{v}\end{array}\right.$

Focus on Newton's $2^{\text {nd }}$ Law: (Chapter 6)

$$
\overrightarrow{\mathbf{F}}_{\text {net }}=0
$$

Problem 6.4: A football coach (125 kg) sits on a sled $(50 \mathrm{~kg})$ while two of his players build their strength by dragging the sled across the field with ropes. The friction force on the sled is 1000 N and the angle between the two ropes is 20°.

b. How hard must they pull to accelerate the coach from rest to $2.50 \mathrm{~m} / \mathrm{s}$ over the distance 5.0 m ?
b. Like a.except that there's non-zero acceleration and a non-zero net force

$$
\sum_{i} \overrightarrow{\mathbf{F}}_{\mathbf{i}}=\overrightarrow{\mathbf{F}}_{\text {net }}=\mathrm{ma}
$$

Geta from $\mathrm{v}_{0}, \mathrm{v}_{\mathrm{f}}$, and $\mathrm{d}: \quad \mathrm{a}=\frac{\left(\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{d}}^{2}\right)}{2 \mathrm{~d}}=0.625 \mathrm{~m} / \mathrm{s}^{2}$
Assume each player pulls equally and set the coordinate system as shown with $\theta_{1}=\theta_{2}$.
$\sum_{i} \mathrm{~F}_{\mathrm{xi}}=\mathrm{ma}_{\mathrm{x}}=\mathrm{F}_{1} \cos \theta_{1}+\mathrm{F}_{2} \cos \theta_{2}-\mathfrak{J}=2 \mathrm{~F} \cos 10^{\circ}-1000 \mathrm{~N}=\left(\mathrm{m}_{\text {coach }}+\mathrm{m}_{\text {sled }}\right) 0.625 \mathrm{~m} / \mathrm{s}^{2}=109.375 \mathrm{~N}$
$\therefore \mathrm{F}=\frac{1109.375 \mathrm{~N}}{2 \cos 10^{\circ}}=563.2 \mathrm{~N}$
$\left\{\right.$ Note that $\left.\sum_{i} \mathrm{~F}_{\mathrm{yi}}=0=\mathrm{F}_{1} \sin \theta_{1}-\mathrm{F}_{2} \sin \theta_{2}=\mathrm{Fsin} \theta-\mathrm{Fsin} \theta\right\}$

Weight \& elevators:

- The "heavier" or "lighter" effect in elevators and "free-fall" is a result of the way scales measure weight. They measure the force of contact and indicate that as weight.
- For the case indicated on the side,

$$
\vec{F}_{\text {net }}=m \vec{a}=\vec{F}_{s p}+\vec{F}_{g}
$$

- If $a=0$, then $F_{\text {sp }}=F_{g}$ and F_{g} is W. However, if $a \neq 0$, then

$$
\vec{F}_{s p}=m \vec{a}-\vec{F}_{g}=m \vec{a}-m \vec{g}=m(\vec{a}-\vec{g})
$$

Since \vec{g} is down, when component values are entered this becomes:

$$
F_{s p}=m(a+g)=m\left(1+\frac{a}{g}\right)
$$

Example: a 75 kg person (about 150 lb.) is in an elevator accelerating upwards at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. What is their apparent weight? (900 N)
b. What is it if the acceleration is downwards at the same rate? (600 N)

Assignment: Read and work on Chapter 6

