PHYS 2211K, preparation for Test 1, relations to know how to use properly

Rectilinear equations of motion:

$\overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{r}}(t)=x(t) \hat{\boldsymbol{i}}+y(t) \hat{\boldsymbol{j}}+z(t) \hat{\mathbf{k}}$ (the position is a function of time)
$\vec{v}(\boldsymbol{t})=\frac{\boldsymbol{d} \vec{r}}{d t} \quad$ (velocity is the rate of change of position)
$\vec{a}(t)=\frac{d \vec{v}}{d t} \quad$ (acceleration is the rate of change of velocity)
etc.
For constant acceleration, these lead to:
$x(t)=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2}$
$y(t)=y_{0}+v_{y 0} t+\frac{1}{2} a_{y} t^{2}$
$z(t)=z_{0}+v_{z 0} t+\frac{1}{2} a_{z} t^{2}$
$v_{f}^{2}=v_{0}^{2}+2 a d$

Corresponding rotational equations of motion:

$\theta=\theta(t)$ (the angular position is a function of time)
$\omega(t)=\frac{d \theta}{d t} \quad$ (angular velocity is the rate of change of angular position)
$\alpha(t)=\frac{d \theta}{d t}$ (angular acceleration is the rate of change of angular velocity)
For constant angular acceleration, these lead to :
$\theta(t)=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}^{2}=\omega_{0}^{2}+2 \alpha \theta$

For uniform circular motion:
$a=\frac{v^{2}}{r}$, towards the center of the circle (centripetal)

