Physics 2211K

Test \# 1
September 16, 2010
"I have neither given nor received help on this exam." Name: \qquad

In order to evaluate your progress in this course, I must see how you arrive at your answers. Therefore, you must show your work in order to receive credit for a question. Always circle your answer and show the units.

1. Vector $\overrightarrow{\boldsymbol{A}}=3 \hat{i}+2 \hat{j}$ and vector $\overrightarrow{\boldsymbol{B}}=2 \hat{i}-4 \hat{j}$. Calculate vector $\overrightarrow{\boldsymbol{C}}$ such that $2 \overrightarrow{\boldsymbol{A}}+3 \overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{C}}=\boldsymbol{0}$. (Express $\overrightarrow{\boldsymbol{C}}$ in the $\hat{\boldsymbol{i}}, \hat{\boldsymbol{j}}$ format.)

$$
\begin{aligned}
& 2 \vec{A}+3 \vec{B}-\vec{C}=0 \Rightarrow \vec{C}=2 \vec{A}+3 \vec{B} \\
& \vec{C}=2 \vec{A}+3 \vec{B}=2(3 \hat{i}+2 \hat{j})+3(2 \hat{i}-4 \hat{j}) \\
& \vec{C}=(12 \hat{i}-8 \hat{j})=12 \hat{i}-8 \hat{j}
\end{aligned}
$$

2. Calculate the magnitude and direction of the vector $\vec{V}=4 \hat{\boldsymbol{i}}-3 \hat{\boldsymbol{j}}$. (Express the direction carefully.)

$$
\begin{aligned}
& V^{2}=V_{x}^{2}+V_{y}^{2}=(4)^{2}+(-3)^{2}=25 \\
& V=5 @ \theta=\tan ^{-1}\left(\frac{-3}{4}\right)=-36.9^{\circ} \text { or }+143.1^{\circ} \\
& \left.\begin{array}{l}
V_{x}>0 \\
V_{y}<0
\end{array}\right\} 4^{\text {th }} \text { quadrant; } \therefore \theta=-36.9^{\circ} \text { as shown }
\end{aligned}
$$

3. An object traveling initially at $25 \mathrm{~m} / \mathrm{s}$ is stopped by the uniform acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take to stop?

$$
v_{f}=v_{0}+a t \Rightarrow 0=25 \mathrm{~m} / \mathrm{s}-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) t \Rightarrow t=\frac{25 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~m} / \mathrm{s}^{2}}=5 \mathrm{~s}
$$

4. An object traveling initially at $25 \mathrm{~m} / \mathrm{s}$ is stopped by the uniform acceleration $5 \mathrm{~m} / \mathbf{s}^{2}$. How far does it travel while stopping?

$$
v_{f}^{2}=v_{o}^{2}+2 a d \Rightarrow 0=(25 \mathrm{~m} / \mathrm{s})^{2}-2\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) d \Rightarrow d=\frac{(25 \mathrm{~m} / \mathrm{s})^{2}}{10 \mathrm{~m} / \mathrm{s}^{2}}=62.5 \mathrm{~m}
$$

5. A car traveling at $20 \mathbf{m} / \boldsymbol{s}$ (approx. $50 \mathrm{mi} / \mathrm{hr}$) is on a (circular) curve with radius $\mathbf{1 2 5} \mathbf{m}$. What (centripetal) acceleration is necessary for it to maintain this path?

$$
a_{c}=\frac{v^{2}}{r}=\frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{125 \mathrm{~m}}=3.20 \mathrm{~m} / \mathrm{s}^{2}
$$

6. An object travels in one dimension with the equation of motion $\boldsymbol{x}(\boldsymbol{t})=\left(\boldsymbol{8 t}-\mathbf{3} \boldsymbol{t}^{3}\right) \boldsymbol{m}$. Calculate its velocity at $\boldsymbol{t}=\mathbf{3 s}$.

$$
\begin{aligned}
& \text { if } x(t)=\left(8 t-3 t^{3}\right) m, \text { then } v(t)=\frac{d x}{d t}=\left(8-9 t^{2}\right) \mathrm{m} / \mathrm{s} \\
& \text { at } t=3 \mathrm{~s}, v(t)=\left[8-9(4)^{2}\right] \mathrm{m} / \mathrm{s}=-73 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. An object travels in one dimension with the equation of motion $x(t)=\left(8 t-3 t^{3}\right) m$. Calculate when it is at rest.

$$
\begin{aligned}
& \text { From } \# 6, v(t)=\frac{d x}{d t}=\left(8-9 t^{2}\right) \mathrm{m} / \mathrm{s} \\
& \text { at rest means } v=0 \text {, so } \\
& v(t)=0=\left[8-9 t^{2}\right] \mathrm{m} / \mathrm{s} \text {, and } \\
& t=\sqrt{8 / 9} s=0.94 \mathrm{~s}
\end{aligned}
$$

8. An object travels in one dimension with the equation of motion $x(t)=\left(8 t-3 t^{3}\right) m$. Calculate where it is at rest.

$$
\begin{aligned}
& \text { From } \# 7, \text { the object is at rest at } t=0.94 \mathrm{~s} \\
& \text { if } x(t)=\left(8 t-3 t^{3}\right) \mathrm{m} \text {, then } \\
& \text { at } t=0.94 \mathrm{~s}, x(t)=\left[8(0.94)-3(0.94)^{3}\right] \mathrm{ms}=+5.03 \mathrm{~m}
\end{aligned}
$$

9. An object travels in one dimension with the equation of motion $x(t)=\left(8 t-3 t^{3}\right) \boldsymbol{m}$. Is its acceleration constant? (Yes or no \& why you say so.)

$$
\begin{aligned}
& \text { If } x(t)=\left(8 t-3 t^{3}\right) m, \text { then } \\
& v(t)=\frac{d x}{d t}=\left(8-9 t^{2}\right) \mathrm{m} / \mathrm{s}, \text { and } \\
& a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=-18 t \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

NO---a is not constant because it depends on time: $a(t)=-18 t \mathrm{~m} / \mathrm{s}^{2}$

10. A golf ball is hit from the tee (on perfectly level ground) with initial velocity $\overrightarrow{\boldsymbol{v}}_{\boldsymbol{0}}=\mathbf{5 0} \mathbf{m} / \boldsymbol{s}$ at the angle to the horizontal $\boldsymbol{\theta}=\mathbf{4 0}$. (Use $\mathbf{g}=\mathbf{1 0} \mathbf{~ m} / \mathrm{s}^{2}$)
a. Calculate the x - and y-components of the initial velocity.

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \theta=(50 \mathrm{~m} / \mathrm{s}) \cos 40^{\circ}=38.30 \mathrm{~m} / \mathrm{s} \\
& v_{0 y}=v_{0} \sin \theta=(50 \mathrm{~m} / \mathrm{s}) \sin 40^{\circ}=32.14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b. Write the equations of motion for $\boldsymbol{x}(\boldsymbol{t})$ and $\boldsymbol{y}(\boldsymbol{t})$ (using numbers and appropriate units for the velocity and acceleration components);
$x(t)=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}$ (for constant acceleration)
$x_{0}=0$ (choice of origin)
$a_{x}=0$ for projectiles
$\therefore x(t)=0+(38.30 \mathrm{~m} / \mathrm{s}) t+0=(38.30 \mathrm{~m} / \mathrm{s}) t$
$y(t)=y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2}$ (for constant acceleration)
$y_{0}=0$ (choice of origin)
$a_{y}=-g=-10 \mathrm{~m} / \mathrm{s}^{2}$ for projectiles
$\therefore y(t)=(32.14 \mathrm{~m} / \mathrm{s}) t-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}$
c. Calculate how long it takes to reach the ground again after leaving the tee (the
time-of-flight). The object is at ground level when $y=0$:

$$
\begin{aligned}
& y(t)=0=(32.14 \mathrm{~m} / \mathrm{s}) t-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}=t\left[(32.14 \mathrm{~m} / \mathrm{s})-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) t\right] \\
& \Rightarrow t=0 \& t=\frac{32.14 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~m} / \mathrm{s}^{2}}=6.43 \mathrm{~s} \\
& t=0 \text { is the start, so } t_{f}=\text { time }- \text { of }- \text { flight }=6.43 \mathrm{~s}
\end{aligned}
$$

d. Calculate how far it travels horizontally (R) before returning to the ground. Horizontal motion is controlled by $x(t) \&$ time-of-flight:

$$
R=v_{0 x} t_{f}=(38.30 \mathrm{~m} / \mathrm{s}) \times(6.43 \mathrm{~s})=246.2 \mathrm{~m}
$$

e. Calculate its maximum height (h) in the trajectory. Maximum height is governed by motion in the y-direction, and h occurs when $v_{y}=0$: $v_{f y}^{2}=v_{0 y}^{2}+2 a_{y} d_{y}$ $v_{0 y}=32.14 \mathrm{~m} / \mathrm{s}$ (initial speed in y direction)
$\left.\begin{array}{l}v_{f y}=0 \text { (is at rest momentarily at max height) } \\ a_{y}=-10 \mathrm{~m} / \mathrm{s}^{2} \text { (acceleration due to gravity) }\end{array}\right\} h=\frac{v_{0 y}^{2}}{-2 a_{y}}=\frac{(32.14 \mathrm{~m} / \mathrm{s})^{2}}{-2\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right)}=51.65 \mathrm{~m}$
$a_{y}=-10 \mathrm{~m} / \mathrm{s}^{2}$ (acceleration due to gravity)
$d_{y}=h \quad\left(y\right.$ distance from start when $\left.v_{y}=0\right)$
f. Calculate how fast it is traveling just before it hits the ground.

Need to calculate $v_{f x}$ and $v_{f y}$ to get $v_{f}^{2}=v_{f x}^{2}+v_{f y}^{2}$:
$v_{f x}=v_{0 x}=38.30 \mathrm{~m} / \mathrm{s}$ because $a_{x}=0$
$v_{f y}=v_{y}$ at $t_{f}: v_{f y}=v_{0 y}+a_{y} t_{f}=32.14 \mathrm{~m} / \mathrm{s}-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right)(6.43 \mathrm{~s})=-32.14 \mathrm{~m} / \mathrm{s}$,
(Also, on return to the ground, $d_{y}=0$ and $v_{f y}^{2}=v_{0 y}^{2}+2 a_{y} d_{y}=v_{0 y}^{2}$)
$v_{f}=\sqrt{(38.30 \mathrm{~m} / \mathrm{s})^{2}+(-32.14 \mathrm{~m} / \mathrm{s})^{2}}=50.0 \mathrm{~m} / \mathrm{s}$

Extra credit. You may earn up to 10 additional points for success with this problem. Do not attempt it until you have done your best on the rest of the exam.
11. Georgia State's place kicker has just made a successful field goal from the line of scrimmage approximately at the $\mathbf{3 0}$ yard line. In doing so, the football left the tee with $\overrightarrow{\boldsymbol{v}}_{\boldsymbol{0}}$ at the angle $\boldsymbol{\theta}=\mathbf{5 0 ^ { \circ }}$ above the horizontal, traveled $\boldsymbol{R}=\mathbf{6 0 m}$ from the tee to the net behind the goalposts, and hit the net $\boldsymbol{h}=\mathbf{8 m}$ above the ground. (Use $\mathbf{g}=\mathbf{1 0} \mathbf{m} / \mathrm{s}^{2}$)

a. How long was the football in flight (from leaving the tee to hitting the net)? Need to check the equations of motion to see how to proceed:
$x(t)=v_{0 x} t \quad\left(a_{x}=0\right) \Rightarrow R=x(T)=\left(v_{0} \cos \theta\right) T \quad(T=t i m e-o f-f l i g h t)$
$y(t)=v_{0 y} t+\frac{1}{2} a_{y} t^{2} \Rightarrow h=y(T)=\left(v_{0} \sin \theta\right) T-\frac{1}{2} g T^{2}$
We know R, h, g, and θ; we want T and v_{0}.
Thus. we have a system of two equations and two unknowns.
From the $x(T)$ equation, we have $v_{0}=R /(T \cos \theta)$; Substituting that into $y(T)$ gives $h=\left(\frac{R}{T \cos \theta}\right)(\sin \theta) \boldsymbol{T}-\frac{1}{2} g T^{2}=R \tan \theta-\frac{1}{2} g T^{2}$, and algebraic rearrangement gives $T=\sqrt{\frac{2(R \tan \theta-h)}{g}}=3.56 \mathrm{~s}$
b. How fast was it traveling $\left(\boldsymbol{v}_{\boldsymbol{0}}\right)$ when it left the tee?

From the $x(T)$ relation and T from part $a .$,

$$
v_{0}=\frac{R}{T \cos \theta}=26.19 \mathrm{~m} / \mathrm{s}
$$

