Physics 2211K, Quiz \# 3 solutions. (September 7, 2010)

Version \#1:

An object is projected horizontally off a cliff $\mathbf{h}=\mathbf{1 0 . 0} \mathbf{~ m}$ high as sketched below. It is observed to travel $\mathbf{R}=\mathbf{2 0 . 0} \mathbf{~ m}$ before hitting the ground.

a. How long was it in the air?

$$
\begin{aligned}
& 0=h+v_{0 y} t+\frac{1}{2} a_{y} t^{2} \\
& v_{o y}=0\left(v_{0}\right. \text { is horizontal) } \\
& a_{y}=-g \\
\therefore 0 & =h-\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{(2)(10 m)}{9.8 m / s^{2}}}=1.43 \mathrm{~s}
\end{aligned}
$$

b. What was its initial speed $\mathbf{v}_{\mathbf{0}}$? $\quad R=v_{0 x} t=v_{0} t \Rightarrow v_{0}=\frac{R}{t}=\frac{20 \mathrm{~m}}{1.43 \mathrm{~s}}=14.0 \mathrm{~m} / \mathrm{s}$,

Version \#2:

An object is projected horizontally off a cliff $\mathbf{h}=\mathbf{4 0 . 0} \mathbf{~ m}$ high as sketched above. It is observed to travel $\mathbf{R}=\mathbf{3 0 . 0} \mathbf{~ m}$ before hitting the ground.
a. How long was it in the air?

$$
\begin{aligned}
& 0=h+v_{0 y} t+\frac{1}{2} a_{y} t^{2} \\
& v_{o y}=0\left(v_{0} \text { is horizontal }\right) \\
& a_{y}=-g \\
& \therefore 0=h-\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{(2)(40 m)}{9.8 m / s^{2}}}=2.86 \mathrm{~s}
\end{aligned}
$$

b. What was its initial speed \mathbf{v}_{0} ? $R=v_{0 x} t=v_{0} t \Rightarrow v_{0}=\frac{R}{t}=\frac{30 \mathrm{~m}}{2.86 \mathrm{~s}}=10.5 \mathrm{~m} / \mathrm{s}$

Version \#3:

An object is projected horizontally off a cliff $\mathbf{h}=\mathbf{2 . 5 0} \mathbf{~ m}$ high as sketched below. It is observed to travel $\mathbf{R}=\mathbf{4 0 . 0} \mathbf{~ m}$ before hitting the ground.
a. How long was it in the air?

$$
\begin{aligned}
& 0=h+v_{0 y} t+\frac{1}{2} a_{y} t^{2} \quad v_{o y}=0(v 0 \text { is horizontal }) \quad a_{y}=-g \\
& \therefore 0=h-\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{(2)(2.5 m)}{9.8 m / s^{2}}}=0.71 s
\end{aligned}
$$

b. What was its initial speed \mathbf{v}_{0} ? $R=v_{0 x} t=v_{0} t \Rightarrow v_{0}=\frac{R}{t}=\frac{40 \mathrm{~m}}{0.71 \mathrm{~s}}=56.0 \mathrm{~m} / \mathrm{s}$

