Physics 2211K Quiz \# 2 solutions:

Version \# 1:

Vector $\overrightarrow{\mathrm{A}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$ and vector $\overrightarrow{\mathrm{B}}=3 \hat{\mathrm{i}}-5 \hat{j}$. Calculate the following:
a. Vector $\vec{C}=\vec{A}+\vec{B}$ (in the \hat{i}, \hat{j} format) $\vec{C}=\vec{A}+\vec{B}=(4+3) \hat{i}+(2-5) \hat{j}=7 \hat{i}-3 \hat{j}$
b. Vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ (in the $|\overrightarrow{\mathrm{C}}|, \theta$ format)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{C}}|=\sqrt{7^{2}+(-3)^{2}}=7.55 \\
& \theta=\arctan \left(\frac{-3}{7}\right)=-23.2^{\circ}(\text { from }+x \text { in 4th quadrant where } x>0 \& y<0)
\end{aligned}
$$

Version \# 2:

Vector $\overrightarrow{\mathrm{A}}=3 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}$ and vector $\overrightarrow{\mathrm{B}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$. Calculate the following:
a. Vector $\vec{C}=\vec{A}+\vec{B}$ (in the \hat{i}, \hat{j} format) $\vec{C}=\vec{A}+\vec{B}=(3-5) \hat{i}+(-7+3) \hat{j}=-4 \hat{i}-2 \hat{j}$
b. Vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ (in the $|\overrightarrow{\mathrm{C}}|, \theta$ format)
$|\overrightarrow{\mathrm{C}}|=\sqrt{(-4)^{2}+(-2)^{2}}=4.47$
$\theta=\arctan \left(\frac{-2}{-4}\right)=26.6^{\circ} \quad$ (from $-x$ in 3rd quadrant where $\mathrm{x}<0 \& \mathrm{y}<0$)

Version \#3:

Vector $\overrightarrow{\mathrm{A}}=4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}$ and vector $\overrightarrow{\mathrm{B}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$. Calculate the following:
a. Vector $\vec{C}=\vec{A}+\vec{B}$ (in the \hat{i}, \hat{j} format) $\vec{C}=\vec{A}+\vec{B}=(4-5) \hat{i}+(7+3) \hat{j}=-\hat{i}+10 \hat{j}$
b. Vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ (in the $|\overrightarrow{\mathrm{C}}|, \theta$ format)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{C}}|=\sqrt{(-1)^{2}+10^{2}}=10.1 \\
& \theta=\arctan \left(\frac{10}{-1}\right)=-84.3^{\circ}(\text { from -x in 2rd quadrant where } \mathrm{x}<0 \& \mathrm{y}>0)
\end{aligned}
$$

NOTE: In describing the direction of a vector, it is necessary to give (or show) the reference direction and to pay attention to the signs of the x-and y components.

