Physics 2211K
 Practice for Test 3

1. In the system sketched below, block A slides on a frictionless surface and the string connecting the two blocks is massless.
\boldsymbol{a}. If $\boldsymbol{M}_{\boldsymbol{B}}=\mathbf{2 k g}$ and $\boldsymbol{M}_{\boldsymbol{A}}=\mathbf{6} \mathbf{k g}$, use work and energy methods to calculate how fast $\boldsymbol{M}_{\boldsymbol{B}}$ and $\boldsymbol{M}_{\boldsymbol{A}}$ are traveling after starting from rest and $\boldsymbol{M}_{\boldsymbol{B}}$ has fallen $2 \boldsymbol{m} . \boldsymbol{v}_{f}=\mathbf{3 . 1 6 ~ m} / \boldsymbol{s}$

b. Repeat part a. for the case where $\boldsymbol{\mu}_{\boldsymbol{k}}=\mathbf{0} . \mathbf{2}$ for $\boldsymbol{M}_{\boldsymbol{A}}$ sliding on the horizontal surface. $v_{f}=2.0 \mathrm{~m} / \mathrm{s}$
c. Repeat part a. for the case where the pulley is a solid cylinder of mass 2 kg , radius $\mathbf{6} \mathbf{c m}$, and the string does not slip as it passes over the pulley. $\boldsymbol{v}_{f}=2.98 \mathrm{~m} / \mathrm{s}$
d. Repeat part b. for the case where the pulley is a solid cylinder of mass 2 kg , radius $\mathbf{6} \mathbf{c m}$, and the string does not
slip as it passes over the pulley. $\boldsymbol{v}_{f}=2.49 \mathrm{~m} / \mathrm{s}$
e. Repeat parts c. and d. using force and torque methods. (Remember that the tension in the string connected to \boldsymbol{B} is not the same as that in the string connected to \boldsymbol{A}. This is necessary because a net torque is needed to accelerate the pulley.)
2. In the system below, the string is massless, $\boldsymbol{A}=\mathbf{4 . 0} \mathbf{~ k g}, \boldsymbol{B}=\mathbf{1 0 . 0} \mathbf{~ k g}, \boldsymbol{\theta}=\mathbf{3 0} \boldsymbol{0}^{\circ}$, and $\mathrm{h}=\mathbf{2 . 5 m}$.

a. Use work and energy to find the speed of \boldsymbol{B} when it has fallen the distance h if it begins from rest and the coefficient of kinetic friction for A is $\mu_{k}=\mathbf{0 . 2}$. (Ignore static friction.) $v_{f}=3.61 \mathrm{~m} / \mathrm{s}$
b. Repeat part c. for the case where the pulley has mass 4 kg , radius $\mathbf{6 ~ c m}$, and can be approximates as a solid disk $\left(\boldsymbol{I}=1 / 2 \boldsymbol{M R} \boldsymbol{R}^{2}\right)$. (Assume that the string does not slip as it passes over the pulley.) $\boldsymbol{v}_{f}=3.37 \mathrm{~m} / \mathrm{s}$
3. On the sketch below, the sloping surface is frictionless, $\boldsymbol{\theta}=\mathbf{3 0 ^ { \circ }}$, the block has mass $\boldsymbol{M}=\mathbf{4} \mathbf{~ k g}$, and the spring constant $\boldsymbol{k}=500 \mathrm{~N} / \mathrm{m}$.
a. If the block just rests against the end of the spring how far is it compressed? $\Delta \boldsymbol{s}=0.04 \mathrm{~m}=4 \mathrm{~cm}$
b. If the spring is compressed by 20 cm and then released, how far does the block travel up the incline beyond the end of the uncompressed spring (i.e., what is \boldsymbol{d})? (Assume the block is released so that it begins from rest.) $d=\mathbf{0 . 3} \mathrm{m}=\mathbf{3 0} \mathrm{cm}$
c. If the block is allowed to slide back down the incline, how far does it compress the spring when it has (momentarily) come to rest again? $\Delta s=20 \mathrm{~cm}$
4. As sketched below, the force $\boldsymbol{F}=\mathbf{2 0 0} \boldsymbol{N}$ acts (through the center of mass) for the distance $\boldsymbol{d}=\boldsymbol{8} \boldsymbol{m}$ on the solid circular cylinder of mass $\boldsymbol{M}=\mathbf{1 2} \mathbf{~ k g}$ and radius $\boldsymbol{R}=\mathbf{3 0} \mathbf{~ c m}$. The cylinder rolls without slipping on the horizontal surface.

a. Calculate how much work $\overrightarrow{\boldsymbol{F}}$ does on the object over the distance; $W=1600 \mathrm{~J}$
b. Use work and energy considerations to calculate the angular speed of the object, and the linear speed of its center of mass, at the end of the 8 m if it began from rest; $v_{f}=\mathbf{1 3 . 3} \mathbf{m} / \mathrm{s}$
c. The object will accelerate uniformly over the distance as its speed increases. Use that fact and our previous kinematic procedures to calculate the object's acceleration. $a=11.1 \mathrm{~m} / \mathbf{s}^{2}$
d. How much time does it take for the object to travel the $\boldsymbol{8} \boldsymbol{m}$? $t=1.2 \mathrm{~s}$
\boldsymbol{e}. Use force considerations and the result from part \boldsymbol{c} to calculate the necessary (static) frictional force $\overrightarrow{\boldsymbol{f}}$ at the point of contact between the object and the surface for it to roll without slipping. (If it is necessary that $\boldsymbol{\mu}_{\boldsymbol{s}}>\boldsymbol{1}$, then it is unlikely that the object actually can roll without slipping under these conditions.) $\boldsymbol{f}_{s}=\mathbf{6 6 . 8} \mathrm{N}$
5. In the system sketched below, the string is massless, $\boldsymbol{M}_{\boldsymbol{A}}=\mathbf{4} \mathbf{~ k g}$, and $\boldsymbol{M}_{\boldsymbol{B}}=\mathbf{1 0 k g}$:

\boldsymbol{a}. Use energy methods to calculate \boldsymbol{B} 's speed after falling $\boldsymbol{h}=1.2 \boldsymbol{m}$ if it began from rest; (What is the speed of \boldsymbol{A} ?) $\boldsymbol{v}_{f}=2.27 \mathrm{~m} / \mathrm{s}$
b. As it falls, B will accelerate uniformly. Use that fact and kinematic procedures to calculate its acceleration. (What is the acceleration of \boldsymbol{A} ?) $a=2.14 \mathrm{~m} / \mathrm{s}^{2}$
c. Repeat parts a. and b. for the case where the pulley is best described as a hoop of radius $\boldsymbol{R}_{\text {pulley }}=8 \mathbf{c m}$ and mass $\boldsymbol{M}_{\text {pulley }}=\mathbf{4} \mathbf{~ k g}$, and the string does not slip as it passes over the pulley. $\boldsymbol{v}_{f}=2 \mathrm{~m} / \mathrm{s} ; \boldsymbol{a}=1.67 \mathrm{~m} / \mathrm{s}^{2}$
d. Repeat part \boldsymbol{c}. using force and torque methods. (Remember that the tension in the string connected to \boldsymbol{B} is not the same as that in the string connected to \boldsymbol{A}. This is necessary because a net torque is needed to accelerate the pulley.) $\boldsymbol{T}_{A}=\mathbf{4 8} \mathbf{N ;} \boldsymbol{T}_{B}=\mathbf{8 0} \mathrm{N}$
6. Re. the object sketched below:
a. Calculate the work $\overrightarrow{\boldsymbol{F}}=\mathbf{5 0} \mathbf{N}$ does on the object over the distance $\boldsymbol{d}=\mathbf{2 . 5} \mathbf{m} . \boldsymbol{W}_{\boldsymbol{F}}=\mathbf{1 2 5} \mathbf{J}$
b. Use work and energy methods to calculate the object's final speed if its mass is $\boldsymbol{M}=\mathbf{1 2} \mathbf{~ k g}$ and it began from rest; $v_{f}=4.56 \mathrm{~m} / \mathrm{s}$

$\overrightarrow{\boldsymbol{F}}$	\mathbf{M}

c. Given that the object accelerates uniformly, use the result from part band kinematic relations to calculate its acceleration. $a=4.17 \mathrm{~m} / \mathrm{s}^{2}$
d. Repeat parts \boldsymbol{b} \& \boldsymbol{c} for the case $\boldsymbol{\mu}_{\boldsymbol{k}}=0.2$. $\boldsymbol{v}_{f}=3.16 \mathrm{~m} / \mathrm{s} ; \boldsymbol{a}=2.0 \mathrm{~m} / \mathrm{s}^{2}$
7. Re. the object sketched below:
\boldsymbol{a}. Calculate the work that the force $\overrightarrow{\boldsymbol{F}}=\mathbf{5 0} \boldsymbol{N}$ does on the object over the horizontal distance $\boldsymbol{d}=\mathbf{2 . 5} \boldsymbol{m}$ when $\boldsymbol{\theta}=\mathbf{3 0}$. $W_{F}=108.3 \mathrm{~J}$

b. Use work and energy methods to calculate the object's final speed if its mass is $\boldsymbol{M}=\mathbf{4} \mathbf{~ k g}$ and it began from rest; $\boldsymbol{v}_{f}=7.36 \mathrm{~m} / \mathrm{s}$
c. Given that the object accelerates uniformly, use the result from part band kinematic relations to calculate its acceleration. $a=10.8 \mathrm{~m} / \mathbf{s}^{2}$
d. Repeat parts $\boldsymbol{b} \boldsymbol{\&} \boldsymbol{c}$ for the case $\boldsymbol{\mu}_{\boldsymbol{k}}=0.2 . \boldsymbol{v}_{f}=6.15 \mathrm{~m} / \mathrm{s} ; \boldsymbol{a}=7.58 \mathrm{~m} / \mathrm{s}^{2}$
8. For the object in \#7, the force can be written as $\overrightarrow{\boldsymbol{F}}=\mathbf{5 0}\left(\frac{\sqrt{3}}{2} \hat{\boldsymbol{i}}+\frac{1}{2} \hat{\boldsymbol{j}}\right) \boldsymbol{N}$ and the displacement as $\overrightarrow{\boldsymbol{d}}=(2.5 \hat{\boldsymbol{i}}) \boldsymbol{m}$. Use vector dot product methods to calculate the work done by the force in moving the object. $\boldsymbol{W}_{\boldsymbol{F}}=\mathbf{1 0 8 . 3} \mathrm{J}$
9. In the situation below, the (uniform) beam has mass $\boldsymbol{M}_{\text {beam }}=750 \mathrm{~kg}$, length $\boldsymbol{L}=\mathbf{6} \boldsymbol{m}$, the load has mass $\boldsymbol{M}=\mathbf{5 0 0} \mathbf{~ k g}$, and the cable is attached at $\boldsymbol{\theta}=\mathbf{3 0 ^ { \circ }}$ and $\boldsymbol{d}=\mathbf{4 m}$ from the wall. The system is in equilibrium.

a. Calculate the horizontal and vertical components of the force on the beam from the connection to the wall. $F_{x}=22733 \mathrm{~N} ; F_{y}=-625 \mathrm{~N}$
b. Calculate the tension in the cable. $\boldsymbol{T}=26250 \mathrm{~N}$

