Physics 2211K

Quiz \# 5, Solutions

In the system sketched below, block A slides on a frictionless surface and the string connecting the two blocks is massless.

a. Sketch the free-body diagram for \boldsymbol{A} showing all the forces acting on it.

Block A :
b. Calculate the tension in the string.

From the free-body diagrams: (note that $\left.a_{A}=a_{B}=a \& T_{A}=T_{B}=T\right)$

$$
\begin{aligned}
& m_{A} a=T \Rightarrow a=\frac{T}{m_{A}} \quad \& \quad m_{B} a=W_{B}-T \Rightarrow m_{B}\left(\frac{T}{m_{A}}\right)=m_{B} g-T \\
& T=\frac{m_{B} g}{\left(m_{B} / m_{A}+1\right)}=\frac{m_{A} m_{B} g}{\left(m_{B}+m_{A}\right)}
\end{aligned}
$$

c. Calculate the acceleration of Block A.

$$
a=\frac{T}{m_{A}}=\frac{m_{B} g}{\left(m_{B}+m_{A}\right)}
$$

d. If it begins from rest, how far does Block B move in $t=3$ seconds?

$$
d=\frac{1}{2} a t^{2}
$$

- For the case where block A has mass $\mathbf{6} \mathbf{~ k g}$ and block \boldsymbol{B} has mass $\mathbf{1 0} \mathbf{~ k g}$:

$$
T=37.5 \mathrm{~N} \& a=6.25 \mathrm{~m} / \mathrm{s}^{2} \quad \& d=28.13 \mathrm{~m}
$$

- For the case where block \mathbf{A} has mass $\mathbf{1 0} \mathbf{~ k g}$ and block \boldsymbol{B} has mass $\mathbf{4} \mathbf{~ k g}$:

$$
T=28.6 \mathrm{~N} \& a=2.86 \mathrm{~m} / \mathrm{s}^{2} \quad \& d=12.86 \mathrm{~m}
$$

- For the case where block \mathbf{A} has mass $\mathbf{6} \mathbf{~ k g}$ and block B has mass $\mathbf{2} \mathbf{~ k g}$:

$$
T=15 \mathrm{~N} \& a=2.5 \mathrm{~m} / \mathrm{s}^{2} \quad \& d=11.25 \mathrm{~m}
$$

