Reflection and Refraction in Multi-layered

 Heterostructures: InterferenceStarting point are the Fresnel's equations derivated from the Maxwell's equations for plane waves on a plane interface between two media. The resulting Fresnel's coefficients for p-/s- polarized light with $\mu_{\mathrm{s}}=\mu_{\mathrm{a}}=1$ were:

Fresnel's coefficients for p-polarized light:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{p}}=\frac{\varepsilon_{\mathrm{s}} \cdot \cos \varphi_{\mathrm{o}}-\sqrt{\varepsilon_{\mathrm{a}}} \cdot \sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\varepsilon_{\mathrm{s}} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{a}}} \cdot \sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \\
& \mathrm{t}_{\mathrm{p}}=\frac{2 \cdot \sqrt{\varepsilon_{\mathrm{a}} \cdot \varepsilon_{\mathrm{s}}} \cos \varphi_{\mathrm{o}}}{\varepsilon_{\mathrm{s}} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{a}}} \sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}
\end{aligned}
$$

Fresnel's coefficients for s-polarized light:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{s}}=\frac{\sqrt{\varepsilon_{\mathrm{a}}} \cdot \cos \varphi_{\mathrm{o}}-\sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\sqrt{\varepsilon_{\mathrm{a}}} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \\
& \mathrm{t}_{\mathrm{s}}=\frac{2 \cdot \sqrt{\varepsilon_{\mathrm{a}}} \cos \varphi_{\mathrm{o}}}{\sqrt{\varepsilon_{\mathrm{a}}} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{s}}-\varepsilon_{\mathrm{a}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}
\end{aligned}
$$

For a multi-layered heterostructure we have to sum over each reflected- and transmitted component at each interface to obtain the total reflected and transmitted wave component!

Reflection and Refraction in Multi-layered Heterostructures: Interference

Assume a multi-layered medium built up by a stack of k -interfaces formed by " k - 1 " isotropic layers on top of a isotropic susbtrate.

Start labeling from " 0 " ambient; " 1 " first layer; " k 1 " $\mathrm{k}^{\text {th }}$-layer and " k ": interface $\mathrm{k}^{\text {th }}$-layer to substrate. The Fresnel's coefficients for a general interface is given through:

$$
\begin{aligned}
& \mathrm{r}_{\left.\mathrm{p}\right|_{\mathrm{k}(\mathrm{k}+1)}}=\frac{\varepsilon_{\mathrm{k}+1} \cdot \sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}-\varepsilon_{\mathrm{k}} \cdot \sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\varepsilon_{\mathrm{k}+1} \cdot \sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}+\varepsilon_{\mathrm{k}} \cdot \sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \\
& \mathrm{r}_{\mathrm{s}_{\mathrm{k}(\mathrm{k}+1)}}=\frac{\sqrt{\varepsilon_{\mathrm{k}}} \cdot \cos \varphi_{\mathrm{o}}-\sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\sqrt{\varepsilon_{\mathrm{k}}} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \\
& \mathrm{t}_{\left.\mathrm{p}\right|_{\mathrm{k}(\mathrm{k}+1)}}=\frac{2 \cdot \sqrt{\varepsilon_{\mathrm{k}+1}} \cdot \sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\varepsilon_{\mathrm{k}+1} \cdot \cos \varphi_{\mathrm{o}}+\sqrt{\varepsilon_{\mathrm{k}}} \sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \\
& \mathrm{t}_{\mathrm{s}_{\mathrm{k}(\mathrm{k}+1)}}=\frac{2 \cdot \sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}}{\sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}+\sqrt{\varepsilon_{\mathrm{k}+1}-\varepsilon_{\mathrm{o}} \cdot \sin ^{2} \varphi_{\mathrm{o}}}} \quad(\mathrm{k} \geq 0)
\end{aligned}
$$

The change in the phase of the wave traversing through the $\mathrm{k}^{\text {th }}$-layer is given by:

$$
\Phi_{\mathrm{k}}=\frac{2 \pi \mathrm{~d}_{\mathrm{k}}}{\lambda} \sqrt{\varepsilon_{\mathrm{k}}-\varepsilon_{0} \sin ^{2} \varphi} \quad(\mathrm{k} \geq 1)
$$

Reflection and Refraction in Multi-layered Heterostructures: Matrix method

Consider a wave incident on an interface of index $\mathrm{k}(\mathrm{k}+1)$ between media of dielectric functions $\varepsilon_{\mathrm{k}}, \varepsilon_{\mathrm{k}+1}$ and suppose the amplitude of the electric field vector is $\mathrm{E}_{\mathrm{k}}{ }^{+}$. That of the reflected wave is $\mathrm{E}_{\mathrm{k}}{ }^{-}$. Inside the film $\left(\varepsilon_{\mathrm{k}+1}\right)$ the resultant of all positive-going waves sum to $\mathrm{E}_{\mathrm{k}+1}^{+}$and those negative-going to $\mathrm{E}_{\mathrm{k}+1}^{-}$.

A linear correlation between layer k and ($k+1$) may be written in matrix form:

$$
\left[\begin{array}{c}
\mathrm{E}_{k}^{+} \\
\mathrm{E}_{\mathrm{k}}^{-}
\end{array}\right]=\frac{1}{\mathrm{t}_{\mathrm{k}+1}}\left[\begin{array}{cc}
1 & r_{k(k+1)} \\
r_{k(k+1)} & \mathrm{e}^{-2 i} \Phi_{\mathrm{k}-1} \\
\mathrm{e}^{-2 i} \Phi_{\mathrm{k}-1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}_{\mathrm{k}+1}^{+} \\
\mathrm{E}_{\mathrm{k}+1}^{-}
\end{array}\right]=\frac{1}{\mathrm{t}_{\mathrm{k}+1}}\left[\mathrm{M}_{\mathrm{k}+1}\right]\left[\begin{array}{l}
\mathrm{E}_{\mathrm{k}+1}^{+} \\
\mathrm{E}_{\mathrm{k}+1}^{-}
\end{array}\right]
$$

with

$$
\left[\begin{array}{c}
\mathrm{E}_{0}^{+} \\
\mathrm{E}_{\mathrm{o}}^{-}
\end{array}\right]=\frac{\left[\mathrm{M}_{1}\right] \cdot\left[\mathrm{M}_{2}\right] \cdot \ldots \cdot\left[\mathrm{M}_{\mathrm{k}+1}\right]}{\mathrm{t}_{1} \cdot \mathrm{t}_{2} \cdot \ldots \cdot \mathrm{t}_{\mathrm{k}+1}}\left[\begin{array}{l}
\mathrm{E}_{k+1}^{+} \\
E_{k+1}^{-}
\end{array}\right]
$$

$$
\text { For the first interface }(\mathrm{k}=0): \Rightarrow \mathbf{M}_{1}=\left[\begin{array}{cc}
1 & r_{01} \\
r_{01} & 1
\end{array}\right]\left(\text { with } \mathrm{e}^{-2 \mathrm{i} \Phi_{\mathrm{o}}}=1 \text {, since } \Phi_{\mathrm{o}}=0\right)
$$ Heterostructures: Matrix method

For a system with ' k ' layers we have to form the matrix product of " k " times [2•2] matrix multiplication:

$$
\left[\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{cc}
1 & r_{01} \\
r_{01} & 1
\end{array}\right] \times\left[\begin{array}{cc}
1 & r_{12} \\
r_{12} \mathrm{e}^{-2 \mathrm{i} \Phi_{1}} & \mathrm{e}^{-2 \mathrm{i} \Phi_{1}}
\end{array}\right] \times\left[\begin{array}{cc}
1 & r_{23} \\
r_{23} \mathrm{e}^{-2 j \Phi_{2}} & \mathrm{e}^{-2 \mathrm{i} \Phi_{2}}
\end{array}\right] \times \ldots \times\left[\begin{array}{cc}
1 & r_{(\mathrm{k}-1) \mathrm{k}} \\
r_{(\mathrm{k}-1) \mathrm{k}} \mathrm{e}^{-2 \mathrm{i} \Phi_{\mathrm{k}}} & \mathrm{e}^{-2 \mathrm{i} \Phi_{\mathrm{k}}}
\end{array}\right]
$$

to obtain the complex reflectance and transmission amplitudes from:

$$
\mathrm{rr}=\frac{\mathrm{E}_{\mathrm{o}}^{-}}{\mathrm{E}_{\mathrm{o}}^{+}}=\frac{\mathrm{c}}{\mathrm{a}} ; \quad \text { and } \quad \mathrm{tt}=\frac{\mathrm{E}_{\mathrm{k}+1}^{+}}{\mathrm{E}_{\mathrm{o}}^{+}}=\frac{\mathrm{t}_{1} \cdot \mathrm{t}_{2} \cdot \ldots \cdot \mathrm{t}_{\mathrm{k}+1}}{\mathrm{a}}
$$

The reflectivity and transmittance are given by:

$$
\mathrm{R}=\mathrm{rr} \cdot \mathrm{rr}^{*}=\frac{\mathrm{c} \cdot \mathrm{c}^{*}}{\mathrm{a} \cdot \mathrm{a}^{*}} ; \quad \text { and } \mathrm{T}=\mathrm{tt} \cdot \mathrm{tt}^{*}=\frac{\left(\mathrm{t}_{1} \cdot \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}+1}\right)\left(\mathrm{t}_{1}^{*} \cdot \mathrm{t}_{2}^{*} \ldots \mathrm{t}_{k+1}^{*}\right)}{\mathrm{a} \cdot \mathrm{a}^{*}}
$$

Reflection amplitudes in multi-layered

Heterostructures: 3- / 4-layered stacks

Reflectance amplitude for a 3-layer stack:
$\mathrm{rr}_{012}=\frac{\mathrm{r}_{01}+\mathrm{r}_{12} \mathrm{e}^{-2 \mathrm{i} \Phi_{1}}}{1+\mathrm{r}_{01} \mathrm{r}_{12} \mathrm{e}^{-2 \mathrm{i} \Phi_{1}}}$
with the phase factor:

$$
\Phi_{1}=\frac{2 \pi \mathrm{~d}_{1}}{\lambda} \sqrt{\varepsilon_{1}-\varepsilon_{0} \sin ^{2} \varphi}
$$

(0) ambient ε_{0}
(1) film1: ε_{1}
(2) substrate ε_{2}

Reflectance amplitude for a 4-layer stack:

$$
\mathrm{rr}_{0123}=\frac{\mathrm{r}_{01}+\mathrm{r}_{12} \mathrm{e}^{-2 \mathrm{i} \Phi_{1}}+\mathrm{r}_{23} \mathrm{e}^{-2 \mathrm{i}\left(\Phi_{1}+\Phi_{2}\right)}+\mathrm{r}_{01} \mathrm{r}_{12} \mathrm{r}_{23} \mathrm{e}^{-2 \mathrm{i} \Phi_{2}}}{1+\mathrm{r}_{01} \mathrm{r}_{12} \mathrm{e}^{-2 \mathrm{i} \Phi_{1}}+\mathrm{r}_{01} \mathrm{r}_{23} \mathrm{e}^{-2 \mathrm{i}\left(\Phi_{1}+\Phi_{2}\right)}+\mathrm{r}_{12} \mathrm{r}_{23} \mathrm{e}^{-2 \mathrm{i} \Phi_{2}}}
$$

with the phase factors:

$$
\begin{aligned}
& \Phi_{1}=\frac{2 \pi \mathrm{~d}_{1}}{\lambda} \sqrt{\varepsilon_{1}-\varepsilon_{0} \sin ^{2} \varphi} \\
& \text { and } \\
& \Phi_{2}=\frac{2 \pi \mathrm{~d}_{2}}{\lambda} \sqrt{\varepsilon_{2}-\varepsilon_{1} \sin ^{2} \varphi}
\end{aligned}
$$

