Solutions for Homework \# 6
Probem\#1: Jackson 11.3: Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with a velocity $v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)} \ldots \quad$ (20 Points)

Let the move between frames Σ and $\Sigma^{-\prime}$ be along x_{1}-direction. Then the Lorentz-transformation may be written in matrix form as

$$
\left.\binom{x_{0}^{\prime}}{x_{1}^{\prime}}=\left(\begin{array}{cc}
\gamma_{1} & -\beta_{1} \gamma_{1} \\
-\gamma_{1} \gamma_{1} & \gamma_{1}
\end{array}\right)\binom{x_{0}}{x_{1}} \quad \right\rvert\, \begin{aligned}
& \beta_{1}=v_{1} / c \\
& \gamma_{1}=\frac{1}{\sqrt{1-\gamma_{1}^{2}}}
\end{aligned}
$$

Similar, the transformation between frames

$$
\Sigma^{\prime} \text { and } \Sigma^{\prime \prime} \text { is }\binom{x_{0}^{\prime \prime}}{x_{1}^{\prime \prime}}=\left(\begin{array}{cc}
\gamma_{2} & -\gamma_{2} \gamma_{2} \\
-\gamma_{2} \gamma_{2} & \gamma_{2}
\end{array}\right)\binom{x_{0}^{\prime}}{x_{1}^{\prime}}
$$

The transformation between Σ and $\Sigma^{\prime \prime}$ is obtained by multiplying the matrices:

$$
\begin{aligned}
\binom{x_{0}^{\prime \prime}}{x_{1}^{\prime \prime}} & =\left(\begin{array}{cc}
\gamma_{2} & -\gamma_{2} \gamma_{2} \\
-\beta_{2} \gamma_{2} & \gamma_{2}
\end{array}\right)\left(\begin{array}{cc}
\gamma_{1} & -\phi_{1} \gamma_{1} \\
-\beta_{1} \gamma_{1} & \gamma_{1}
\end{array}\right)\binom{x_{0}}{x_{1}} \\
& =\left(\begin{array}{cc}
\left(1+\beta_{1} \gamma_{2}\right) \gamma_{1} \gamma_{2} & -\left(\rho_{1}+\beta_{2}\right) \gamma_{1} \gamma_{2} \\
-\left(\beta_{1}+\gamma_{2}\right) \gamma_{1} \gamma_{2} & \left(1+\beta_{1} \gamma_{2}\right) \gamma_{1} \gamma_{2}
\end{array}\right)\binom{x_{0}}{x_{1}}
\end{aligned}
$$

However, we want $\binom{x_{0}^{\prime \prime}}{x_{1}^{\prime \prime}}=\left(\begin{array}{cc}\gamma & -8 \gamma \\ -\beta \cdot \gamma & \gamma\end{array}\right)\binom{x_{0}}{x_{1}}$
Compare: $\leadsto \gamma=\gamma_{1} \gamma_{2}\left(1+s_{1} s_{2}\right)$ and $v \beta=\gamma_{1} \gamma_{2} \cdot\left(s_{1}+s_{2}\right)$

$$
\sim s=\frac{s_{1}+\delta_{2}}{1+\delta_{1} \delta_{2}} \Rightarrow v=\frac{v_{1}+v_{2}}{1+v_{1} v_{2} / c^{2}}
$$

what had to be shown

Problem \#2: In a Compton effect, a γ-ray of wavelength λ strikes a free, but initially stationary, electron of mass m. The photon is scattered at an angle θ (measured from the incident direction), and its scattered wavelength is λ^{\prime}. The electron recoils at an angle ϕ (measured from the incident direction).

(1) $E_{P_{h}}+E_{e}=E_{p h}^{\prime}+E_{e}^{\prime}$
(2) $P_{P_{h}}=P_{P_{h}}^{\prime} \cdot \cos \theta+P_{l}^{\prime} \cdot \cos \phi$
energy and momentum conservation
(3) $0=P_{P_{h}}^{\prime} \sin \theta+P_{e}^{\prime} \sin \phi$

Energy:

$$
\begin{aligned}
E_{P_{h}}=\frac{h \cdot c}{\lambda}, \quad E_{P_{h}}^{\prime}=\frac{h \cdot c}{\lambda^{\prime}}, \quad E_{e}=m_{e_{0}} c^{2}, E_{e}^{\prime} & =m^{\prime} \cdot c^{2} \\
& =\gamma m_{0} c^{2}
\end{aligned}
$$

momentums: $P_{P_{h}}=\frac{h}{\lambda}, P_{P_{h}}^{\prime}=\frac{h}{\lambda^{\prime}}, P_{e}^{12}=\left(m^{\prime 2}-m^{2}\right) c^{2}$
b.) $(2)^{2}+(3)^{2}: P_{P_{h}}^{2}+P_{P_{h}}^{\prime 2}-2 \cdot P_{P_{3}}^{\prime} \cdot P_{P_{h}} \cdot \cos \theta=P_{e}^{12}$

$$
\begin{equation*}
\Longrightarrow \frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 \cdot h^{2}}{\lambda \cdot \lambda^{\prime}} \cdot \cos \theta=\left(m^{\prime 2}-m^{2}\right) c^{2} \tag{14}
\end{equation*}
$$

from (1): $\frac{h \cdot c}{\lambda}+m_{e} c^{2}=\frac{h c}{\lambda^{\prime}}+m^{\prime} c^{2}$

$$
\text { (5)-(4): } \begin{aligned}
& m_{c}^{2} \cdot c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}+2 m_{e} \cdot c \cdot h \cdot\left[\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right]-\frac{2 h^{\prime}}{\lambda \cdot \lambda^{\prime}}=m_{c}^{2} c^{2}-\frac{h^{2}}{\lambda^{2}} \\
& -\frac{h^{2}}{\lambda^{\prime 2}}+\frac{2 h^{2}}{\lambda^{2} \cdot \lambda^{2}} \cdot \cos \theta=0 \\
\leadsto & 2 m_{e} \cdot c \cdot h\left(\lambda^{\prime}-\lambda\right)=2 h^{2} \cdot(\lambda-\cos \theta) \leadsto \lambda^{\prime}-\lambda=\frac{2 h \cdot \sin ^{2} \theta / \lambda}{m_{e} \cdot c}
\end{aligned}
$$

c.)

$$
\begin{aligned}
& T=E-m c^{2}=h \cdot\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right) \text {, with } \lambda^{\prime}-\lambda=\left(2 h \cdot \sin ^{2} \theta / 2\right) / m_{c} c \\
& \leadsto T=h \cdot c \cdot\left[\frac{1}{\lambda}-\frac{1}{\lambda+\frac{2 h \sin ^{2} \theta / 2}{m e c}}\right]=\frac{h \cdot c}{\lambda} \cdot \frac{\left(\frac{2 h}{\lambda \cdot m c}\right) \cdot \sin ^{2} \theta / 2}{1+\frac{2 h}{\lambda \cdot m \cdot c^{2}} \cdot \sin ^{2} \theta / 2}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=(5 \mathrm{~m}, 3 \mathrm{~m}, 0,10 \mathrm{~ns}) \\
& P_{2}=(8 \mathrm{~m}, 7 \mathrm{~m}, 0,15 \mathrm{~ns}) \\
& S_{12}^{2}=-\left|\vec{x}_{1}-\vec{x}_{2}\right|^{2}+c^{2}\left(t,-t_{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a.) } t_{1}^{\prime}=\gamma\left(t_{1}-s / c x_{1}\right), t_{2}^{\prime}=\gamma\left(t_{2}-s / c x_{2}\right) \quad \text { with } t_{1}^{\prime}=t_{2}^{\prime} \\
& \sim s_{x}=c \cdot \frac{\left(t_{1}-t_{2}\right)}{x_{1}-x_{2}}=\frac{c \cdot 0.5 n 5}{3 m} \approx 0.5, \gamma=\frac{1}{\sqrt{1-s^{2}}}=1.154 \\
& v_{x}=0.5 \cdot c
\end{aligned}
$$

b.)

$$
\begin{aligned}
t^{\prime}=\gamma\left(t-s / c x_{1}\right) \leadsto t_{1}^{\prime} & =1.154\left(10 \mathrm{~ns}-\frac{0.5}{c} \cdot 5 \mathrm{~m}\right) \simeq 2 \mathrm{~ns} \\
t_{2}^{\prime} & =1.154\left(15 \mathrm{~ns}-\frac{0.5}{c} \cdot 8 \mathrm{~m}\right) \simeq 2 \mathrm{~ns}
\end{aligned}
$$

c.)

$$
\begin{aligned}
& x^{\prime}=\gamma\left(x_{1}-s \cdot \cdot \cdot \cdot x_{1}\right), \quad y=y^{\prime}, z=z^{\prime} \\
& \Delta=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

in $5: \Delta=\sqrt{9+16}=5 \mathrm{~m}$

$$
x_{1}^{\prime}=1.154 \cdot(5-0.5 \cdot c \cdot 1015) \simeq 4.04
$$

$$
x_{2}^{\prime}=1.154 \cdot(8-0.5 \cdot c \cdot 15 n s)=6.64
$$

in $S^{\prime \prime}: \Delta^{\prime}=\sqrt{6.76+16} \simeq 4.77 \mathrm{~m}$ or $\Delta=8 . \Delta^{\prime}$
d.)

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}^{\prime} ; \quad \gamma\left(x_{1}-s c \cdot t_{1}\right)=\gamma\left(x_{2}-s \cdot c \cdot t_{2}\right) ; \delta=\frac{1}{c} \frac{\left(x_{1}-x_{2}\right)}{t_{1}-t_{2}}=\frac{(8-5) m}{(15-10) n \cdot \frac{1}{c}} \\
& \leadsto s \approx 2, \quad v_{x}=2 c>c \Rightarrow \text { if is impossible }
\end{aligned}
$$

e.)

$$
\begin{aligned}
& S_{1,2}^{2}=c^{2}\left(t_{1}-t_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}-\left(z_{1}-z_{2}\right)^{2}=c^{2} \cdot(5 n,)^{2}-(3 m)^{2}-(4 m)^{2} \\
&=9 \cdot 10^{16} \cdot 25 \cdot 10^{-8}-9-16 x-22.5 \leq 0 \leadsto \text { it is a space }- \text { Line } \\
& \text { separation! /// }
\end{aligned}
$$

a.) $\varphi=\frac{q}{r^{\prime}}, \quad A=0, A^{\prime}=\left(\varphi^{\prime}, 0,0,0\right)$
b.)

$$
A=\left(\begin{array}{cccc}
\gamma & 8 \gamma & 0 & 0 \\
8 \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) A^{\prime}
$$

$$
\begin{aligned}
& \varphi=\gamma \varphi^{\prime} \\
& A_{1}=\gamma \gamma \varphi^{\prime} \\
& A_{2}=0 \\
& A_{3}=0
\end{aligned}
$$

φ^{\prime} in K system: $\frac{q}{\sigma}=\frac{q}{\sqrt{(x-0 \cdot t)^{2} \cdot y+y^{2}+z^{2}}}$
c.)

$$
\begin{aligned}
& E=-\frac{1}{c} \frac{\partial \nabla}{\partial t}-\nabla \varphi, \quad \vec{B}=\vec{\nabla} \times \vec{A} \\
& \vec{E}=-\left[\frac{8 \gamma q}{c} \cdot \frac{(x-v t) \cdot v \gamma^{2}}{\left[(x-v t)^{2} \gamma^{2}+y^{2}+z^{2}\right]^{3 / 2}} \cdot \hat{e}_{x}-\frac{\gamma^{3} \cdot q(x-v \cdot t)}{\left[(x-v t)^{2} \gamma^{2}+y^{2}+z^{2}\right]^{3 / 2}} \cdot \hat{e}_{x}\right. \\
& -\hat{e}_{y} \underbrace{\frac{\gamma \cdot q \cdot y}{\left[(x-v t)^{2} \gamma^{2}+y^{2}+z^{2}\right]^{3 / 2}}}_{=E_{y}}-\hat{e}_{z} \underbrace{\frac{\gamma \cdot q \cdot z}{\left[(x-a t)^{2} y^{2}+y^{2}+z^{2}\right]^{3 / 2}}}_{=E_{z}}] \\
& =+\left[\hat{e}_{x} \cdot \frac{q \gamma(x-v t)}{\left((x-v t)^{2} y^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\hat{e}_{y} \frac{\gamma q \cdot y}{\left((x-v t)^{2} y^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\hat{e}_{z} \frac{\gamma q \cdot z}{\left((x-v t)^{2} y^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right] \\
& \vec{B}=\vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A & 0 & 0
\end{array}\right|=\frac{\partial A_{1}}{\partial z} \cdot \hat{\jmath}-\frac{\partial B_{1}}{\partial y} \hat{k} \\
& =\frac{\gamma \delta \cdot q}{\left((x-0 t)^{2} \gamma^{2}+y^{2}+z^{2}\right)^{3 / 2}} \cdot(-z \cdot \hat{\jmath}+y \hat{k})
\end{aligned}
$$

Problem \#5: Jackson 11.13: An infinitely long straight wire of negligible cross-sectional area is at rest and has a uniform linear charge density q_{0} in the inertial frame K'. (20 Points)
a.) $\oint_{S} \vec{E} d^{2} r=\frac{Q_{\text {end }}}{\varepsilon_{0}}=h E_{N} 2 \pi r=h q \cdot / \varepsilon_{0} \leadsto E_{r}=\frac{q_{0}}{2 \pi \varepsilon_{0} r}$
$E_{\theta}=0$ and $E_{z}=0$ by Gaur law and $\vec{B}=0$ since there is no current in this frame.
From Jason eq. 11. 149: $E^{\prime}=\gamma(\vec{E}+\vec{s} \times \vec{B})-\gamma^{2} / \gamma+1 \cdot \vec{s}(\vec{s} \cdot \vec{E})$

$$
\begin{aligned}
& B^{\prime}=\gamma(\vec{B}-\vec{s} \times \vec{E})-\gamma^{2} / \gamma+\dot{\beta}(\vec{s} \cdot \vec{B}) \\
& \leadsto E_{r}^{\prime}=\gamma \hat{\lambda} \cdot|\vec{E}|=\hat{त} \cdot \frac{\gamma \theta_{0}}{2 \pi \varepsilon_{\sigma}}, \quad E_{\theta}^{\prime}=0=E_{z}^{\prime}
\end{aligned}
$$

and

$$
B_{\theta}^{\prime}=\gamma\left(-\beta E_{\gamma}\right)=-\beta \gamma \frac{q_{0}}{2 \pi \varepsilon_{0} \gamma}, \quad B_{r}^{\prime}=0, \quad B_{z}^{\prime}=0
$$

$\left[\ln s^{\prime}\right.$-units: $\left.\quad E_{N}^{\prime}=\frac{\gamma q_{0}}{2 \pi \varepsilon_{\lambda}}, \quad B_{\theta}^{\prime}=-\frac{1}{c} s \cdot \gamma \frac{q_{0}}{2 \pi \xi \cdot}\right]$
b.)

In K-system we have: $\vec{j}^{\mu}=\left(c .8, j_{x}, j_{y}, j_{z}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\alpha=\left(\begin{array}{cccc}
\gamma & -s \cdot \gamma & 0 & 0 \\
-s \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \leadsto\left(\frac{c \cdot q_{0} \cdot \delta(r)}{2 \pi \gamma}, 0,0,0\right) \\
\sim T_{0}
\end{array} \quad \text { transform in } K^{\prime} \text {-frame: } \vec{j}^{\mu \prime}=L \cdot \vec{j}^{\mu} \\
& \rightarrow \vec{j}^{\mu \prime}=\ldots=\left(\frac{c \cdot \gamma q_{0}}{2 \pi \mu^{\prime}} \cdot \delta(v),-\frac{c \cdot \gamma \cdot \delta \cdot q_{0}}{2 \pi \sigma^{\prime}} \cdot \delta(v), 0,0\right)
\end{aligned}
$$

c.) For k^{\prime} - hame, we found $\vec{J}^{\mu \prime}$, charge density ρ in K-fame transforms to ρ^{\prime} in k^{\prime}-frame: $\rho^{\prime}=8 \rho ; \quad \vec{\delta}^{\prime}=-\beta \gamma \cdot c \cdot q_{0} \delta(N) \cdot \hat{z}=-\frac{\delta \nu q_{0}}{c \cdot \mu_{0}} \delta(x) \cdot \hat{z}$

$$
\rightarrow E_{-}^{\prime}=\frac{\lambda^{\prime}}{2 \pi \varepsilon_{\theta} \gamma}=\frac{\gamma \cdot q_{0}}{2 \pi \varepsilon_{0} \tau} \text { and } B_{\theta}^{\prime}=\frac{\mu_{0} J_{E}^{\prime}}{2 \pi r}=\frac{\mu_{0}}{2 \pi r^{\prime}} \cdot\left(\frac{\left.-\delta \gamma q_{c}\right)}{\left(\gamma_{0} \varepsilon_{0}\right.}=\frac{-1}{c} s \cdot \gamma \cdot \frac{q_{0}}{2 \pi \xi^{\prime} \gamma}\right.
$$

