Solutions for Homework \# 4

1. The electric field for an elliptically polarized plane wave is $\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}$, where $\mathrm{E}_{1}=\overline{\mathrm{e}}_{\mathrm{x}} \cdot \mathrm{E}_{1} \mathrm{e}^{\mathrm{i}(\cdot \mathrm{k} \cdot \mathrm{z}-\omega \cdot \mathrm{t}+\alpha)}$ and $\mathrm{E}_{2}=\overline{\mathrm{e}}_{\mathrm{y}} \cdot \mathrm{E}_{2} \mathrm{e}^{\mathrm{i} \cdot(\mathrm{k} \cdot \mathrm{z}-\omega \cdot t+\beta)}$. Calculate the average energy flow for such a wave. (15points)
(a) Does the energy flow depend on the phases α and β ? Assume that E_{1} and E_{2} are real quantities.
(b) Determine the polarization state of $\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}$!
a.)
\leadsto energy flow does not depend on phase.
b.) E_{1}, E_{2} are complex amplitudes $\leadsto E_{1}=E_{0 x} e^{i \varphi_{1}}$; add phase $\alpha \leadsto E_{0 x} \cdot e^{i \varphi_{1}+\alpha}$

$$
\begin{aligned}
& E_{1} E_{0 x} E^{i \varphi_{2}} ; \text { " } s \leadsto E_{o y} e^{i \varphi_{2}+s} \\
& E_{2}=E_{o y} e^{i \varphi_{2}} ; E_{o y} \text {-real }
\end{aligned}
$$

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}=[\underbrace{\hat{e}_{x} \cdot E_{0 x} \cdot e^{c\left(p_{1}+k\right)}+\hat{e}_{y} E_{0 y} e^{\left(t_{2}+8\right)}}] \cdot e^{e(k \cdot z-\omega t)}
$$

$=$ elliptical polarized if not further specified!

$$
\begin{aligned}
& \vec{E}=\vec{E}_{1}+\vec{E}_{2} \quad, \quad\left[\text { for plane wave : } \vec{H}=\sqrt{\frac{\xi}{\mu}} \cdot \hat{n} \times \vec{E}\right] \\
& \vec{E}_{1}=\hat{e}_{x} E_{1} \cdot e^{c(h z-\omega t+\alpha)} \Longrightarrow \vec{H}_{1}=\hat{e}_{y} \sqrt{\frac{\varepsilon}{\mu}} \cdot E_{1} \cdot e^{i(h \cdot z-\omega t+\alpha)} \\
& E_{2}=\hat{e}_{y} E_{2} e^{i(h z-\omega t+\phi)} \leadsto \vec{H}_{2}=-\hat{e}_{x} \sqrt{\frac{\xi}{\mu}} E_{2} \cdot e^{i(k \cdot z-\omega t+\phi)} \\
& L \vec{S}>=\frac{1}{2} \operatorname{Re}\left(\vec{E} \times \vec{H}^{*}\right)=\frac{1}{2}\left[\left(\vec{E}_{1}+\vec{E}_{2}\right) \times\left(\vec{H}_{1}+\vec{H}_{2}\right)\right] \\
& =\frac{1}{2} \operatorname{Re}\{\vec{E}_{1} \times \vec{H}_{1}^{*}+\underbrace{\vec{E}_{1} \times \vec{H}_{2}^{*}}_{=0}+\underbrace{\vec{E}_{2} \times H_{1}^{*}}_{=0}+\vec{E}_{2} \times \vec{H}_{2}^{*}\} \\
& \hat{e}_{x} \times \hat{e}_{x}=0 \\
& =\frac{1}{2} \operatorname{Re}\left\{\hat{e}_{x} x \hat{e}_{y} \cdot E_{n} \cdot e^{i(k z-\omega t+\alpha)} \cdot \sqrt{E_{\mu}} \cdot E_{n} \cdot e^{-i\left(k_{z}-\omega t+\alpha\right)}\right. \\
& \left.+\hat{e}_{y} \times\left(-\hat{e}_{x}\right) \cdot E_{2} \sqrt{\varepsilon_{\mu}} E_{2} \cdot e^{i(k z-\omega t+\phi)} \cdot e^{-i(4 z-\omega t+\phi)}\right\} \\
& -\frac{1}{2} \operatorname{Re}\left\{\hat{e}_{z} E_{n}^{2} \sqrt{\varepsilon_{/ \mu}}+\hat{e}_{z} E_{2}^{2} \cdot \sqrt{\frac{\varepsilon}{\mu}}\right\} \\
& =\frac{1}{2}\left(E_{1}^{2}+E_{2}^{2}\right) \cdot \sqrt{\mu} \cdot \hat{e}_{z}
\end{aligned}
$$

Problem \#2: A linearly polarized wave $\mathrm{E}_{x}=\mathrm{E}_{o} \mathrm{e}^{\mathrm{i}(k, z \cdot(\cdot) \cdot \mid)}$ is normally incident onto a dielectric medium. The medium has indices of refraction n_{1} and n_{2} for left-circularly and right-circularly polarized light, respectively. Find the reflection coefficient R. (15 Points)

linearly polarized light is a superposition
of two circularly polarized waves

$$
\begin{aligned}
\vec{E} & =\frac{1}{2} E_{0}\left(\hat{e}_{x}+\hat{e}_{y}\right) e^{i(k \cdot z-\omega t)}+\frac{1}{2} E_{0}\left(\hat{e}_{x}-i \hat{e}_{y}\right) \cdot e^{i(k \cdot z-\omega t)} \\
& =\vec{E}_{e}+\vec{E}_{r}
\end{aligned}
$$

Boundary condition on interface: $\left.\quad E_{I}\right|_{\perp}=\left.E_{I I}\right|_{\perp},\left.H_{I}\right|_{\perp}=\left.H_{I I}\right|_{\perp}$
left circular:

$$
\begin{aligned}
& \sim E_{l}+E_{l}^{\prime}=E_{l}^{\prime \prime} \\
& \quad \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \cdot\left(E_{l}-E_{l}^{\prime}\right)=\sqrt{\frac{\varepsilon_{l}}{\mu_{l}}} \cdot E_{l}^{\prime \prime}
\end{aligned}
$$

right circular:

$$
E_{r}+E_{r}^{\prime}=E_{\gamma}^{\prime \prime}
$$

$$
\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \cdot\left(E_{r}-E_{r}^{\prime}\right)=\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} \cdot E_{r}^{\prime \prime}
$$

$$
\begin{aligned}
\sim E_{l}^{\prime}= & \frac{n_{0}-n_{l}}{n_{0}+n_{l}} \cdot E_{l}, \quad E_{\tau}^{\prime}=\frac{n_{0}-n_{r}}{n_{0}+n_{r}} \cdot E_{r}, \mu_{0}=\mu_{l}=\mu_{r}=1 \\
R= & \left(\frac{E_{l}^{\prime}}{E_{l}}\right) \cdot\left(\frac{E_{l}^{\prime}}{E_{l}}\right)^{*}+\left(\frac{E_{r}^{\prime}}{E_{*}}\right) \cdot\left(\frac{E_{r}^{\prime}}{E_{r}}\right)^{*}= \\
& \frac{1}{2}\left\{\left(\frac{n_{0}-n_{l}}{n_{0}+n_{l}}\right)^{2}+\left(\frac{n_{0}-n_{r}}{n_{0}+n_{r}}\right)^{2}\right\} \\
& \text { \{ince we split wave in two! }
\end{aligned}
$$

Problem \#3: Problem 7.4, Jackson textbook (30 points)
plane wave: $\vec{E}_{l}=E_{0_{i}} e^{(i(h \cdot z-\omega t)}, \quad \vec{H}_{i}=\sqrt{\frac{\varepsilon_{i}}{\mu_{0}}} \hat{n} \times \overrightarrow{\vec{E}_{i}}$

$\varphi_{0}=0$: normal incidence

$$
\leadsto r_{p}=r_{s}=\frac{\left|E_{0-1}\right|}{\left|E_{0 i}\right|}, R=r_{s} \cdot r_{s}^{*}
$$

reflected wave: $\overrightarrow{E_{r}}=E_{a r} e^{-i(k \cdot z+\omega t)}$

$$
\vec{H}_{r}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} e^{-i(k \cdot z+\omega t)} \cdot\left[-\hat{n} \times \overrightarrow{E_{r}}\right]
$$

transmitted wave: $\quad \vec{E}_{t}=E_{Q<} e^{i\left(k^{\prime} \cdot z-\omega t\right)}$

$$
\vec{H}_{t}=\frac{1}{\omega \mu} k^{\prime} \cdot \hat{n} \times \vec{E}_{t}, \quad k^{\prime}=\omega \cdot \sqrt{\varepsilon_{s} \cdot \mu_{s}}=\frac{\omega}{v}
$$

Maxwell boundary conditions for perpendicular (1) Field component

$$
\begin{aligned}
& \left.E_{i}\right|_{\perp}=\left.E_{N}\right|_{\perp} \text { or }\left[E_{o l}+E_{o r}-E_{o t}\right] \times \hat{n}=0 \\
& \text { and }\left.\quad H_{i}\right|_{\perp}=\left.H_{r}\right|_{\perp} \text { or }\left[H_{a i}+H_{o r}-H_{0 t}\right] \times \hat{n}=0 \\
& \Rightarrow \quad E_{o i}+E_{o r t}-E_{o t}=0 \quad \text { and } \quad \sqrt{\theta_{0}}\left(\left|E_{o i}\right|-\left|E_{o r}\right|\right)=\sqrt{\mu_{s}} \cdot\left|E_{o t}\right| \\
& L v_{s}=\frac{\left|E_{o r}\right|}{\mid E_{0 i}}=\frac{-\mu_{s}+\sqrt{\mu_{s} \cdot \varepsilon_{s}}}{\mu_{s}+\sqrt{\mu_{s} \varepsilon_{s}}}, \quad, \quad \mu, \varepsilon \text { ambient set to } 1
\end{aligned}
$$

now use relations: $\xi_{\varepsilon}=\varepsilon_{1}-i \varepsilon_{2}=\left(n^{2}-k^{2}\right)-i(2 n k)=\frac{c^{2}}{n^{2}}-i \frac{0 \mu c^{2}}{\omega}$

$$
\sqrt{\varepsilon}=n-i k
$$

to separate real -and imaginary parts in ts

$$
\leadsto i_{s}=\frac{1-b-i c}{1+b+i c}=\frac{(1-b-i c)(1+b-i c)}{(1+b+i c)(1+b-i c)}=\frac{1-b^{2}-c^{2}-2 i c}{(1+b)^{2}+c^{2}} \Rightarrow
$$

Problem \#3 continued:

$$
\begin{aligned}
& \operatorname{lin} 2 \quad v_{s}=\frac{\sqrt{\varepsilon_{s}}-\mu_{s}}{\sqrt{\varepsilon_{s}}+\mu_{s}}=\frac{\sqrt{\varepsilon_{s}^{2}-i \xi_{s}^{i}}-\mu_{s}}{\sqrt{\xi^{2}-i \xi_{s}^{i}}+\mu_{s}}=\frac{\sqrt{\varepsilon_{s}^{2}-2 i / \delta \omega^{2}}-\mu_{s}}{\sqrt{\varepsilon_{s}^{2}-2 i / \delta \omega^{2}}+\mu_{s}} \\
& {\left[\varepsilon_{s}^{i}=\sigma \mu / \omega=2 / \delta \omega^{2}, \delta=2 / \mu \sigma \omega:=\operatorname{skin} \text { depth }\right]}
\end{aligned}
$$

use relationship $\sqrt{a+c b}=\sqrt{\frac{a+\sqrt{a^{2}+b^{2}}}{2}}+i \sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{2}}$

$$
\begin{aligned}
& \leadsto b=\frac{1}{\sqrt{\mu_{s}}} \cdot \sqrt{\frac{\sqrt{\varepsilon_{0}^{+^{2}}+4 / \delta^{2} \omega^{4}}+\varepsilon^{+2}}{2}} ; \quad c=\frac{1}{\sqrt{\mu_{s}}} \cdot \sqrt{\frac{\sqrt{\xi_{s}^{+2}+4 / \delta^{2} \omega^{4}}-\varepsilon_{\varepsilon}^{+}}{2}}
\end{aligned}
$$

with $R=r_{s} \cdot t_{s}^{*}=\left|r_{s}\right|^{2} \cdot e^{i \theta}=\frac{\left[\left(1-b^{2}-c^{2}\right)-2 i c\right] \cdot\left[\left(1-b^{2}-c^{2}\right)+2 i c\right]}{\left[(1+b)^{2}+c^{2}\right]^{2}}$

$$
\leadsto \theta=\arctan \left(\frac{-2 c}{1-b^{2}-c^{2}}\right)=\text { Phase }
$$

b.) poor conductor: $\sigma \rightarrow 0 \rightarrow \delta \rightarrow \infty \Rightarrow c=0$

$$
L \text { Phase } \theta \rightarrow 0 \text { and } r_{s}=\frac{\sqrt{\varepsilon_{s} / \mu_{s}}-1}{\sqrt{\varepsilon_{s} / \mu_{s}}+1} \approx \frac{n-1}{n+1}
$$

C.) good conductor: $\sigma \rightarrow \infty \Rightarrow \delta \rightarrow 0$
ε_{2} becomes dominant, we can neglect $\varepsilon_{5}{ }^{\gamma}$

$$
\begin{aligned}
& H b \approx c \text { and } c \approx \frac{1}{\mu_{s} \omega} \cdot \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \cdot \frac{1}{\delta} \\
& \rightarrow R=r_{s} \cdot d_{s}^{*}=\frac{\left[\left(1-b^{2}-c^{2}\right)-2 i c\right]\left[\left(1-b^{2}-c^{2}\right)+2 c^{\prime c}\right]}{\left[(1+)^{2}+c^{2}\right]^{2}} \approx \frac{1+4 c^{4}}{\underbrace{\mu c^{4}}} \cdot\left(1-\frac{2}{c}\right) \\
& \approx 1-\frac{2}{c}=1-2\left(\frac{\mu_{s} \omega}{\sqrt{\mu_{0} / \frac{1}{c}}} \cdot \delta\right)=1-2 \frac{\omega}{c} \cdot \delta
\end{aligned}
$$

Problem \#4: An unpolarized light is incident upon a dielectric interface at Brewster's angle. Find the ratio of the transmission coefficient T_{1} / T_{2}, and show that this ratio is greater than unity for n not equal to n^{\prime}. (20 points)

For unpolarized light, we have equal distribution of parallel (II) and perpendicular (1) polarized light in the incoming ray beam. Dielectric interface: No absuption, $R+T=1$
for $n<n^{\prime}$ [vocum $(n) \rightarrow$ dielectric $\left(n^{\prime}\right)$]

$$
\varphi_{s}=\arctan (n 1 / n)
$$

with $\mu=\mu^{\prime}=1$, the Fresnel coefficients simplify

$$
\begin{aligned}
& t_{11}=\frac{2 \cdot n \cdot n^{\prime} \cos \varphi_{B}}{n^{\prime} \cos \varphi_{\beta}+\pi \cdot \sqrt{n^{\prime 2}-n^{2} \sin ^{2} \varphi_{s}}} \text { and } t_{s}=\frac{2 \cdot n \cdot \cos \varphi_{\beta}}{n \cdot \cos \varphi_{B}+\sqrt{n^{\prime}-n^{3} \sin ^{2} \varphi_{8}}} \\
& \left.t_{11}\right|_{\varphi_{e}}=\frac{2 \cdot n \cdot n^{\prime} \cdot \frac{n}{\sqrt{n^{\prime} 4 n^{2}}}}{\frac{n^{\prime 2} \cdot n}{\sqrt{n^{\prime 2}+n^{2}}}+n \sqrt{n^{\prime 2}-\frac{n^{2} \cdot n^{\prime 2}}{n^{\prime 2}+n^{2}}}}=\cdots \frac{2 n^{2} n^{\prime}}{2 n n^{\prime 2}}=\frac{n}{n^{\prime}} \\
& \left.t_{\perp}\right|_{\varphi_{B}}=\frac{2 \cdot n \cdot \frac{n}{\sqrt{n^{\prime 2}+n^{2}}}}{n^{\prime}\left(\frac{n}{\sqrt{n^{\prime 2}+n^{2}}}\right)+\sqrt{n^{\prime}-\frac{n^{2} \cdot n^{\prime 2}}{n^{2}+n^{\prime 2}}}}=\ldots=\frac{2 n^{2}}{n^{2}+n^{\prime 2}} \\
& \Leftrightarrow \quad T_{\perp}=\alpha \cdot \frac{4 n^{4}}{\left(n^{2}+n^{\prime 2}\right)^{2}}, \quad T_{11}=\alpha \cdot \frac{n^{2}}{n^{\prime 2}} \\
& \text { ratio } \frac{T_{11}}{T_{1}}=\frac{n^{2} \cdot\left(n^{2}+n^{12}\right)^{2}}{n^{12} \cdot 4 n^{2}}=\frac{n^{4}+n^{14}+2 n^{2} n^{\prime 2}}{4 n^{2} \cdot n^{12}}>1 \text { for } \quad n^{\prime}>\text {, } \\
& n^{\prime}>n \\
& \leadsto T_{k}>T_{\perp}
\end{aligned}
$$

Problem \#5: A thin dielectric film of thickness \boldsymbol{d} and the dielectric function ε_{1} (ε_{1} real) lies between media of dielectric functions ε_{0} and ε_{2}. A light wave of frequency ω is incident normally from ε_{0}. Calculate the reflection coefficient R. If $\varepsilon_{0}=\varepsilon_{2}=1$, simplify R and find the conditions for minimum and maximum reflections as function of film thickness, assuming a fixed wavelength λ. (20 points)

Three layer stack, normal incidence

$$
\mu_{0}, \mu_{1}, \mu_{2}=1
$$

$$
\begin{aligned}
& H=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & r_{0} \\
r_{01} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & r_{12} \\
r_{12} e^{-2 i \phi_{1}} & \left.e^{-2 i \phi_{1}}\right) \ldots \\
L r_{123}= & \frac{r_{01}+r_{12} \cdot e^{-2 i \phi_{1}}}{1+r_{01} \cdot r_{12} \cdot e^{-2 i \phi_{1}}}, \phi_{1}=\frac{2 \pi d_{1}}{2} \cdot \sqrt{\varepsilon_{1}-\varepsilon_{0} \sin \xi_{0}} \\
R=r r_{123} \cdot N r_{123}^{*}=\frac{r_{01} \cdot r_{01}^{*}+r_{01} \cdot r_{12} \cdot e^{2 i \phi_{1}}+r_{01}^{*} \cdot r_{12} \cdot e^{-2 i \phi_{1}}+r_{12} \cdot r_{12}^{*}}{1+r_{01}^{*} r_{12}^{*} e^{2 i \phi_{1}}+r_{01} \cdot r_{12} \cdot e^{-2 i \phi_{1}}+r_{01} \cdot r_{0} \cdot{ }^{*} \cdot r_{12} \cdot r_{12}^{*}}
\end{array} .\right.
\end{aligned}
$$

Normal Incidence; and $\varepsilon_{2}=\varepsilon_{0}$:

$$
\leadsto v_{01}=\frac{\sqrt{\varepsilon_{1}}-1}{\sqrt{\varepsilon_{1}}+1}, \quad v_{12}=\frac{1-\sqrt{\varepsilon_{1}}}{1+\sqrt{\varepsilon_{1}}}, \phi_{1}=\frac{2 \pi \alpha}{\lambda} \cdot \sqrt{\varepsilon_{1}}
$$

dielectric $n=\sqrt{\varepsilon_{1}}$, all real values

$$
\left.\begin{array}{rl}
\rightarrow R & =\frac{\frac{(n-1)^{2}}{(n+1)^{2}}+\frac{(n-1)(1-n)}{(n+1)^{2}} \cdot e^{2 i \phi_{1}}+\frac{(n-1)(1-n)}{(n+1)^{2}} e^{-2 i \phi_{1}}+\frac{(1-n)^{2}}{(n+1)^{2}}}{1+\frac{(n-1)(1-n)}{(n+1)^{2}} e^{2 i \phi_{1}}+\frac{(n-1)(1-n)}{(n+1)^{2}} e^{-2 i \phi_{1}}+\frac{(n-1)^{2}(1-n)^{2}}{(n+1)^{4}}} \\
& =\frac{(n-1)^{2} \cdot\left[2-\left(e^{2 i \phi_{1}}+e^{\left.-2 i \phi_{1}\right)}\right]\right.}{(n+1)^{2}-(n-1)^{2} \cdot\left[e_{=-2 \cos 2 \phi_{1}}^{2 i \phi_{1}}+e^{-2 i \phi_{1}}\right]}+\frac{(n-1)^{4}}{(n+1)^{2}}
\end{array}=\frac{(n-1)^{2} \cdot\left[2+2 \cos 2 \phi_{1}\right]}{(n+1)^{2}+(n-1)^{?} \cdot 2 \cos 2 \phi_{1}+\frac{(n-1)^{4}}{(n+1)^{2}}}\right)
$$

\leadsto Maximum: $\frac{4 \pi \alpha}{\lambda}: n=\frac{\pi}{2} \leadsto d_{0}=\frac{\lambda}{8 \cdot \sqrt{\varepsilon_{1}}} ;$ Minimum: $d_{0}=\frac{\lambda}{4 \sqrt{\varepsilon_{1}}}$

