Physics 8110 - Electromagnetic Theory II

Assignment \#4

(due to Monday, March 19, 2018)

1. The electric field for an elliptically polarized plane wave is $\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}$, where $\mathrm{E}_{1}=\overline{\mathrm{e}}_{\mathrm{x}} \cdot \mathrm{E}_{1} \mathrm{e}^{\mathrm{i} \cdot(\mathrm{k} \cdot \mathrm{z}-\omega \cdot \mathrm{t}+\alpha)}$ and $\mathrm{E}_{2}=\overline{\mathrm{e}}_{\mathrm{y}} \cdot \mathrm{E}_{2} \mathrm{e}^{\mathrm{i} \cdot(\mathrm{k} \cdot \mathrm{z}-\omega \cdot \mathrm{t}+\beta)}$. Calculate the average energy flow for such a wave.
(a) Does the energy flow depend on the phases α and β ? Assume that E_{1} and E_{2} are real quantities.
(b) Determine the polarization state of $\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}$!
(15points)
2. A linearly polarized wave $\mathrm{E}_{x}=\mathrm{E}_{o} \mathrm{e}^{\mathrm{i} \cdot(\mathrm{k} \cdot \mathrm{z}-\omega \cdot \mathrm{t})}$ is normally incident onto a dielectric medium. The medium has indices of refraction n_{1} and n_{2} for left-circularly and rightcircularly polarized light, respectively. Find the reflection coefficient R. (15points)
3. Problem 7.4, Jackson textbook.
(30points)
4. An unpolarized light is incident upon a dielectric interface at Brewster's angle. Find the ratio of the transmission coefficient T_{1} / T_{2}, and show that this ratio is greater than unity for n not equal to n '.
(20points)
5. A thin dielectric film of thickness \boldsymbol{d} and the dielectric function ε_{1} (ε_{1} real) lies between media of dielectric functions ε_{0} and ε_{2}. A light wave of frequency ω is incident normally from ε_{0}. Calculate the reflection coefficient R.

If $\varepsilon_{0}=\varepsilon_{2}=1$, simplify R and find the conditions for minimum and maximum reflections as function of film thickness, assuming a fixed wavelength λ.

