

Assignment #4

(due to Monday, March 19, 2018)

1. The electric field for an elliptically polarized plane wave is $E=E_1+E_2$, where

 $E_1 = \hat{e}_x \cdot E_1 e^{i \cdot (k \cdot z - \omega \cdot t + \alpha)}$ and $E_2 = \hat{e}_y \cdot E_2 e^{i \cdot (k \cdot z - \omega \cdot t + \beta)}$. Calculate the average energy flow for such a wave.

- (a) Does the energy flow depend on the phases α and β ? Assume that E_1 and E_2 are real quantities.
- (b) Determine the polarization state of $E=E_1+E_2!$ (15points)
- 2. A linearly polarized wave $E_x = E_o e^{i \cdot (k \cdot z \omega \cdot t)}$ is normally incident onto a dielectric medium. The medium has indices of refraction n_1 and n_2 for left-circularly and right-circularly polarized light, respectively. Find the reflection coefficient *R*. (15points)
- 3. Problem 7.4, Jackson textbook. (30points)
- 4. An unpolarized light is incident upon a dielectric interface at Brewster's angle. Find the ratio of the transmission coefficient T_1/T_2 , and show that this ratio is greater than unity for *n* not equal to *n*'. (20points)

5. A thin dielectric film of thickness *d* and the dielectric function ε_1 (ε_1 real) lies between media of dielectric functions ε_0 and ε_2 . A light wave of frequency ω is incident normally from ε_0 . Calculate the reflection coefficient *R*.

If $\varepsilon_0 = \varepsilon_2 = 1$, simplify *R* and find the conditions for minimum and maximum reflections as function of film thickness, assuming a fixed wavelength λ . (20points)