

Physics 8110 - Electromagnetic Theory II

Assignment #3

(due to Monday, Feb. 26, 2018)

1. Kramers-Kronig relations applied to conductive medium:

Problem 7.23, Jackson textbook (page 348).

(30 Points)

- 2. The index of refraction of diamond is $n_2 = 2.42$.
- a) Construct a graph that shows the perpendicular and parallel reflected amplitudes as function of angle of incidence for an air -diamond ($n_1 = 1.0$) interface.
- b) Construct a similar graph for the perpendicular and parallel reflectance as function of angle of incidence.
- c) Calculate the Brewster angle for the air -diamond interface.
- d) Calculate the "crossover" angle, at which the reflected and transmitted amplitudes are equal.

Assume (
$$\mu_1 = \mu_2 = \mu_0$$
) (30 Points)

3. The phenomenon that the permittivity ε changes as function of frequency is called dispersion. By extension, whenever the speed of a wave depends on its frequency, the supporting medium is called dispersive! Shallow water $(d < \lambda)$ is nondispersive; the waves travel at a speed that is proportional to the square root of the depth.

Show that the wave velocity v is twice the group velocity $v_g = d\omega/dk$. (20 Points)

4. Assuming negligible damping $(\gamma_j = 0)$, calculate the group velocity $(v_g = d\omega/dk)$ of the waves described by $\vec{E}(z,t) = \vec{E}_0 \cdot e^{-\kappa \cdot z} \cdot e^{i(k \cdot z - w \cdot t)}$,

where $\alpha=2\cdot\kappa$ is the absorption coefficient, $k=\frac{n\cdot\omega}{c}$ the wave vector and ϵ the complex dielectric function $\epsilon=1+\frac{N\cdot q^2}{2\cdot m\cdot \epsilon_s}\sum_i\frac{f_i}{w_i^2-w^2-i\cdot\gamma_i\cdot w}$

Show that $v_g < c$, even when v > c.

(20 Points)