

Real-time optical characterization of ammonia (NH₃) by UV absorption spectroscopy

Nikolaus Dietz and Vincent Woods

Department of Physics & Astronomy

Georgia State University; Atlanta GA

http://www.phy-astr.gsu.edu/dietzrg/HPCVD.html

Last update: Jan. 10, 2005

Advantage of UV spectroscopy to study precursor decomposition dynamics Dept. Physics & Astronomy

GSU

N. Dietz

- optical detection below 400 nm eliminates interference with radiation from heated substrate / gas phase:
 - UV absorption
 - Luminescence
 - Raman spectroscopy
 - Light Scattering

Characterization of NH₃ UV-absorption

GSU

N. Dietz.

Characterization of NH₃ UV-absorption : MFC-I

GSU

N. Dietz

Characterization of NH₃ UV-absorption: MFC-II

GSU

N. Dietz

Dept. Physics & Astronomy

NH₃ characterization: Absorption maxima

The total flow of gases through the HPCVD reactor is given by $F = F_{Main_N2} + F_{NH3} = 0.5 \cdot z + 1 \cdot 10^{-2} \cdot y \text{ [slm]}$ The molar ammonia flow ratio χ through the reactor is given $\chi = \frac{n_{NH3}}{n_{total}} = \frac{n_{NH3}}{n_{Main_N2} + n_{NH3}} = \frac{y}{50 \cdot z + y}$

where z and y are the percentage of flow full scale (FS) with 50 slm and 1 slm, respectively.

*NH*₃ *flow: Concentration & Sensitivity*

GSU

The number concentration of NH₃ molecules per time unit as function of the observed absorption *at* $\lambda = 221.6 \text{ nm}$ N_{NH₃($\lambda = 221.6 \text{ nm}$) = $\frac{7.17 \cdot 10^{21} \cdot z \cdot \ln \alpha'}{1 - 32 \cdot \ln \alpha'}$ [s⁻¹]}

with
$$\alpha' = \frac{\alpha_{@221.6nm} - 80}{80.01}$$

Absorption line at $\lambda = 221.6$ nm sensitive for NH₃ concentrations in the range: 10⁺¹⁹ - 10⁺²¹

*NH*₃ *flow: Concentration & Sensitivity*

GSU

Absorption peak maxima correlate linearly with NH₃ flow ratio χ in a double log scale!

Sensitivity to NH₃ concentrations

$\lambda = 224.8 \text{ nm}$	(10 +21 - 10+24)
$\lambda = 221.6$ nm	(10 +18 - 10+21)
$\lambda = 217.1 \text{ nm}$	(10 +17 - 10+19)
$\lambda = 213.07 \text{ nm}$	(10 +16 - 10+18)
$\lambda = 209.21 \text{ nm}$	(10 +15 - 10+17)
$\lambda = 205.38 \text{ nm}$	(10 +14 - 10+17)
$\lambda = 201.81 \text{ nm}$	(? - 10 ⁺¹⁶)
$\lambda = 198.14 \text{ nm}$	(? - 10 ⁺¹⁶)
$\lambda = 194.62 \text{ nm}$	(? - 10 ⁺¹⁵)

Decomposition of NH₃

GSU

N. Dietz.

Dept. Physics & Astronomy

GSU

Transmission traces monitored at $\lambda = 221.6$ nm during NH₃ precursor pulse injection in the reactor at 1.6 bar and a total flow through the reactor of 5slm. The NH₃ flow was varied from 10 - 500 sccm (1 - 50% FS). The cycle sequence is 6 s with a 1 s NH₃ pulse width.

pulses injected 6 s apart

Dept. Physics & Astronomy

GSU

Dept. Physics & Astronomy

Gest

Main flow increased to 10 slm! $> NH_3$ *pulses sharpened*

Dept. Physics & Astronomy

GSU

N. Dietz

Dept. Physics & Astronomy

References

- [1] N. Dietz, M. Strassburg and V. Woods, "Real-time Optical Monitoring of Ammonia Decomposition Kinetics in InN Vapor Phase Epitaxy at Elevated Pressures", AVS 51st International Symposium, Anaheim, CA, Nov. 14-19, 2004.
- [2] N. Dietz an V. Woods, unpublished results (2004).

refer to <u>http://www.phy-astr.gsu.edu/dietzrg/HPCVD.html</u>