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Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We
study such spike-burst neural activity and the transitions to a synchronized state using a model of
coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling
strength increases incoherence first and then induces two different transitions to synchronized states,
one associated with bursts and the other with spikes. These sequential transitions to synchronized states
are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results
suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst
synchrony is a precursor to spike synchrony.
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rest and bursting states. In a coupled system, burst syn- the fast subsystem with a constraint, _yy � 0. Equivalently,
The phenomenon of neuronal spike-burst activity is
characterized by a recurrent transition between rest state
and firing state with a burst of multiple spikes. This
activity is a multi-time-scale phenomenon and is caused
by a slow process (burst) modulating the fast action-
potential firing (spike). Certain cells in the mammal
brain, for example, neurons in the thalamus during
periods of drowsiness, inattentiveness, and sleep, are
known to exhibit spike-burst activity [1–4]. The slow
(<1 Hz) oscillations, observed in the electroencephalo-
graphic recordings of naturally sleeping humans and
other mammals, are considered to be the result of a
synchronized spike-burst activity of billions of neurons
in the brain [4,5]. Midbrain dopaminergic neurons, which
have great importance in different aspects of brain func-
tion such as reward-mediated learning, movement con-
trol, cognition, and motivation [6], also exhibit two
modes of action-potential firing: spike firing and burst
firing [7,8]. Some clinical disorders, such as Parkinson’s
disease, schizophrenia, and drug addiction, are found to
be originated from some imbalance in these neurons [9–
11]. Interestingly, some types of epileptic seizures are also
believed to depend on rhythmic burst firing in the thala-
mic and thalamocortical circuits [12–14]. Thus, the study
of synchronization and desynchronization of neuronal
spike-burst behaviors from biophysical models may help
us understand further the information processing in the
brain and even the origins of certain mental disorders.

Synchronization of neurons with spike-burst activity
may involve synchrony of individual spikes and/or syn-
chrony of bursts, or both. There have been some theoreti-
cal studies on the classification of bursting behaviors from
neuron models [15,16]. The bursting activity, which is
typically viewed as being the result of interaction be-
tween the multi-time-scale (fast and slow) subsystems
and the slow subsystem, is considered responsible for
switching the dynamics of the fast subsystem between
0031-9007=04=92(2)=028101(4)$22.50 
chronization is often found easier to achieve than indi-
vidual spike synchronization. However, the question of
systematic transitions to synchrony and the order of syn-
chronization in multi-time-scale systems of coupled os-
cillators remains unexplored.

In a coupled system of certain chaotic oscillators, as the
coupling strength is increased from zero, the oscillations
become less and less incoherent and finally completely
coherent —first, synchronization in phase and then syn-
chronization in amplitude emerge [17,18]. A recent work
[19] involving coupled Lorenz attractors revealed that the
oscillations can be more incoherent as a result of coupling
as measured by Lyapunov exponents. The authors suggest
that this phenomenon is causally related to the existence
of double scrolls in the Lorenz attractor. One can view
multiple scrolls as a geometric analog of multiple inherent
time scales in the system. The question of general interest
is then about the effect of different time scales (as in
neurons) and coupling strength on coherence of oscilla-
tions in a coupled system.

The purpose of this Letter is to investigate this
question in the context of neuronal spike-burst behav-
iors. Using a coupled system of Hindmarsh-Rose (HR)
[20,21] neurons, we present evidence that the coupling
strength can increase incoherence first and then induce
two different transitions to synchronized states, one as-
sociated with burst (slow time-scale dynamics) and the
other with spikes (fast time-scale dynamics).

A multi-time-scale dynamical system (for example, a
neuron with spike-burst behaviors) can be written in a
singularly perturbed form: _xx � f�x; y�, _yy � �g�x; y�,
where x is a vector of fast variables, y is a vector of
slow variables that modulates the fast activity, and ��1
is a ratio of fast=slow time scales. In such a system, one
usually observes an almost instant jump in x compo-
nents followed by a finite speed motion in the y compo-
nents. Setting � � 0 yields the equation _xx � f�x; y� for
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rescaling time with � � �t and setting � � 0, one ob-
tains the equation for the slow subsystem as f�x;y��0;
y0 �g�x;y�, where 0 � d=d�. Here f�x; y� � 0 represents
the slow manifold. One can look at the slow and fast
subsystems separately and find their common asymptotic
state to estimate the state of the full system.

As an example of a singularly perturbed system, we
consider the Hindmarsh-Rose neuron described by the
following equations of motion [21]: _xx � y� ax3 � bx2 �
z� Iext, _yy � c� dx2 � y, _zz � r�s�x� x0� � z	, where x
is the membrane potential, y is associated with the fast
current, Na� or K�, and z with the slow current, for
example, Ca2�. Here a � 1:0, b � 3:0, c � 1:0, d �
5:0, s � 4:0, r � 0:006, x0 � �1:60, and Iext is the ex-
ternal current input. x, y are fast variables and z is a slow
variable. r is the ratio of fast=slow time scales. This
system exhibits a multi-time-scale spike-burst chaotic
behavior for 2:92< Iext < 3:40, as shown in the bifurca-
tion diagram (Fig. 1), where the time interval (�t) be-
tween successive spikes is plotted against Iext. The inset is
a time series of membrane potential (x) showing spike-
burst activity at Iext � 3:2. Now we consider two HR
neurons coupled linearly via x component as follows: _xxi�
yi�ax3i �bx2i �zi�Iext���xj�xi�, _yyi�c�dx2i �yi,
and _zzi � r�s�xi � x0� � zi	, where � 
 0 is the coupling
strength, and i � 1; 2, j � 2; 1 are the indices. The syn-
chronized state will then be represented by:

_xx � y� ax3 � bx2 � z� Iext; (1)

_yy � c� dx2 � y; (2)

_zz � r�s�x� x0� � z	; (3)

as the differences jx1 � x2j, jy1 � y2j, jz1 � z2j vanish in
the limit of t ! 1. This occurs when the synchronization
manifold becomes completely stable. If we now trans-
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FIG. 1 (color online). The bifurcation diagram for a
Hindmarsh-Rose neuron: interspike interval (�t) versus exter-
nal current (Iext). The inset shows the time series of a spike-
burst activity of membrane potential (x) at Iext � 3:2.
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form to x? � x1 � x2, y? � y1 � y2, and z? � z1 � z2,
in the limit when these variables are very small
(x21 � x22 � 2xx? and x31 � x32 � 3x2x?), the motion trans-
verse to the synchronization manifold can be described
by the following equations:

_xx? � y? � 3ax2x? � 2bxx? � z? � 2�x?; (4)

_yy? � �2dxx? � y?; (5)

_zz? � r�sx? � z?�: (6)

The solution of Eqs. (4)–(6) determines the stability of
the synchronized states. The minimal condition for
stability of the synchronized state represented by
Eqs. (1)–(3) is that the Lyapunov exponents associated
with Eqs. (4)–(6) be negative for the transverse subsys-
tem. By solving Eqs. (4)–(6) in combination with
Eqs. (1)–(3), we determine the transverse Lyapunov ex-
ponents, two of those shown in Fig. 2. As the coupling
strength is increased from zero, the initially zero expo-
nent starts to increase, reaches a peak, and then starts to
decrease along with the other positive exponent. These
exponents cross zeros at two different coupling strengths
and both become negative. It implies that coupling may
not always increase coherence. Instead, in a multi-time-
scale system of coupled oscillators, a low coupling
strength makes the system more incoherent and higher
coupling strengths can synchronize the slow subsystem or
both the slow and fast subsystems. Figure 3 underscores
this point. The first transition occurs at � � 0:45 and the
second transition at � � 0:50 corresponding, respectively,
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FIG. 2 (color online). Initially zero and positive transverse
Lyapunov exponents (�?0�) versus coupling strength (�). The
initial increase of the zero Lyapunov exponent with the cou-
pling strength is evidence that coupling may not always in-
crease the degree of coherence of oscillations in a coupled
system, especially in multi-time-scale dynamical systems.
The inset is the blowup of the portion of the plot near the
transitions at �s � 0:45 and �f � 0:50, where �s and �f corre-
spond to the onsets of burst synchrony and spike synchrony,
respectively.
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to the synchronization of the slow and fast oscillations
of the coupled system. All the transverse variables
�x?; y?; z?� diverge from zero with time at � � 0:40
[shown in Figs. 3(a) and 3(b)]. Only x? and y?, which
are associated with the fast dynamics, diverge at � �
0:40, and the variable associated with the slow dy-
namics, z?, remains close to zero [shown in Figs. 3(c)
and 3(d)]. Figures 3(e) and 3(f) show that x?, y?, and z?
all converge to zero at � � 0:52.

We now consider the slow subsystem and estimate the
coupling strength for its transition to the synchronized
state with an analytical approach. The equations obtained
by rescaling time with � � rt and setting r ! 0 in
Eqs. (1)–(6) represent the slow subsystem and are as
follows: z0 � s�x� x0� � z and z0? � sx? � z?, with
the constraints 0 � c� �d� b�x2 � ax3 � z� Iext and
0 � ��2�d� b�x� 3ax2 � 2�	x? � z?. Eliminating x?
from these equations, we obtain

z0? �

�
1

��x; ��
� 1

�
z?; (7)

where ��x; �� � ��2�d� b�x� 3ax2 � 2�	=s. The syn-
chronized state on the slow time scale will be stable
if f�1=��x; ��	 � 1g � 0. On the other hand, we do not
pose a stability constraint on x? and y?, and thus we
investigate only the onset of burst synchrony. Using the
asymptotic state of the full system and the first equation
of the constraints, we first parametrize x on the slow
manifold by a numerical fit. Then, for the entire range
0 � � � 1, we calculate ��x; ��. The result shows that
f�1=��x; ��	 � 1g changes sign from positive to negative
at � � 0:45, which is in excellent agreement with �s �
0:45, the first transition in Fig. 2. This alternative ana-
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FIG. 3 (color online). Variations (x?, y?, z?) transverse to t
he synchronization manifold. (a),(b) x?; y?; z? all diverge
from zero at � � 0:40< �s. (c),(d) At � � 0:47< �f, only
z? stays bounded around zero, indicating synchrony only on
the slow time scale. (e),(f) All the variations (x?; y?; z?) damp
out to zero at � � 0:52 > �f, resulting in the system in full
synchrony.
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lytical approach also confirms that the first transition in
Fig. 2 is associated with the slow subsystem.

As the ratio (r � 1) of fast=slow time scales in
Eqs. (1)–(3) is increased, the time interval between bursts
start to change. At higher values of r, the average inter-
burst interval is of the same order as the average inter-
spike interval. Figure 4 shows how r changes the onsets of
burst and spike synchrony. As r ! 1, these two transi-
tions merge into one. These results consistently imply that
multi-time-scale dynamical systems have different re-
gimes of synchronization for different time scales.

The calculation of Lyapunov exponents can be done for
a network of N neurons in a similar way. Figure 5 shows
two of the maximum transverse Lyapunov exponents in
an electrically coupled network of eight neurons. The
numerical simulation was carried out by taking the
Jacobian matrix for the full coupled system. The feature
of two transition points as in a two-neuron system can
also be seen here. In general, for an N-neuron network,
one can follow a similar scheme used by Pecora and
Carrol in Ref. [22] to look at the variations transverse
to the synchronization manifold. For example, let us
consider an N-neuron network described by the following
equation:

_xx i � F�xi� � �
X
j

GijH�xj�; (8)

where xi is the dynamical variable vector (xi; yi; zi) for
site i in an N-oscillator array. The isolated dynamics for
each neuron is _xxi � F�xi�. Here � is the coupling
strength, H:R3 ! R3 is the coupling function, and G is
an N � N matrix which determines neuron-to-neuron
coupling. The N � 1 constraints x1 � x2 � . . . � xN de-
fine the synchronization manifold. For the invariance of
the synchronization manifold, the rows of Gij are chosen
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FIG. 4 (color online). (�s; �f) at �?0� � 0 versus r (dashed
line for �s and solid line for �f). As the ratio (r) of fast=slow
time scales is increased, the two transitions for synchronization
merge into one.
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FIG. 5 (color online). �?0� versus � in a network of eight
neurons. Here also, the first two maximum transverse Lyapunov
exponents cross zero on the � axis at different points: �s � 0:11
and �f � 0:12.
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such that
PN

j�1 Gij � 0. Considering perturbations to the
synchronized state x and diagonalizing G, one obtains
the generic block-diagonalized variational equation for
the transverse directions as follows:

_�� � DF�x��� ���
�������
�1

p
��DH�x��;

where ���
�������
�1

p
�� is an eigenvalue of �G. DF�x� is the

Jacobian matrix evaluated on the synchronization mani-
fold and DH�x� is a 3� 3 matrix that determines which
of the oscillator components are coupled. For example,
for x component coupling in a network of Hindmarsh-
Rose neurons, only the first element of the 3� 3 matrix is
1 and all the others are 0. Separating � into real part �r
and imaginary part �i, we get

_��r � �DF�x� � �DH�x�	�r � �DH�x��i; (9)

_��i � �DF�x� � �DH�x�	�i � �DH�x��r: (10)

Given the coupling matrix G, the transverse Lyapunov
exponents can be estimated by solving Eqs. (9) and (10).
The variations of the two maximum transverse Lyapunov
exponents with � can determine the transitions to syn-
chronized states on different time-scale oscillations.
Also, as in the two-neuron system, a similar analysis
can be carried out for the network of N-coupled neurons
by separating the dynamics into fast and slow subsystems.
This theoretical approach precisely predicts the onset of
burst synchrony in an N-neuron system (for example, the
transition, �s � 0:11, as observed in Fig. 5 for an eight-
neuron system).

In summary, in a coupled multi-time-scale dynamical
system of oscillators, we explore the effect of coupling
strength on synchronization of the slow and fast subsys-
tems. We find that neuronal synchrony of spike-burst
activity is a multiscale phenomenon and involves syn-
028101-4
chrony of bursts and synchrony of spikes, or both.
Coupling may not always decrease Lyapunov exponents.
Instead, it does the opposite in a multiscale dynamical
system such as coupled neurons, indicating that low
values of coupling increase incoherence of oscillations.
A stronger coupling synchronizes the system, but on two
scales of oscillations. There is an order of synchrony
onsets with increasing coupling value: first, synchrony
on the slow time-scale oscillations (for example, burst
synchrony) and then synchrony on the fast time-scale
oscillations (spike synchrony).
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