MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) If I weigh 650 N on Earth and 5320 N on the surface of a nearby planet, what is the acceleration							
due to gravity on that pla			_				
A) 92.2 m/s ²	B) 58.5 m/s ²	C) 80.2 m/s^2	D) 69.8 m/s ²				
Weight $=$ mass x acceler	Weight = mass x acceleration due to gravity; $g' = g^*w'/w$						
2) A boy throws a rock with	n an initial velocity of 2.30	0 m/s at 30.0° above the 1	norizontal. How long	2)			
does it take for the rock t	does it take for the rock to reach the maximum height of its trajectory?						
A) 0.117 s	B) 0.207 s	C) 0.324 s	D) 0.230 s				
voy = 2.3 m/s sin(30.deg); $vy = voy + at$, where $vy = 0$ for max point, $a = -g$							
3) A satellite is in orbit around a planet. The orbital radius is 29.0 km and the gravitational							
acceleration at that heigh	nt is 3.7 m/s^2 . What is the	satellite's orbital speed?					
A) 330 m/s	B) 100 m/s	C) 33 m/s	D) 10 m/s				
use $mv^*v/r = mg$							
4) A 15 kg block is on a ram	np which is inclined at 20	° above the horizontal. It	is connected by a	4)			
string to a 19 kg mass which hangs over the top edge of the ramp. Assuming that frictional							
	what is the magnitude of		=				
A) 3.8 m/s^2	B) 4.5 m/s^2	C) 4.2 m/s^2	D) 4.0 m/s^2				
T-m1gsin(theta) = m1*a	m2g-T = m2a; solve for	a and use given values					
5) A 0.140 kg baseball is thr			n average force of	5)			
5000.0 N, which results i	n a velocity of 37.0 m/s in	the opposite direction. I	How long were the	,			
bat and ball in contact?	•	* *	Ü				
A) 1.59 x 10 ⁻² s	B) 3.82 x 10 ⁻² s	C) 2.22 x 10 ⁻³ s	D) 5.33 x 10 ⁻³ s				
t = change in momentum/force							
6) A particle experiences a force given by $F = \alpha - \beta x^3$. Find the potential field the particle is in.							
(Assume that the zero of potential energy is located at $x = 0$.)							
A) $U(x) = -3\beta x^2$		B) $U(x) = -\alpha x + \frac{\beta}{4}x^4$					
ß.		_					
C) $U(x) = \alpha x - \frac{\beta}{4}x^4$		D) $U(x) = 3\beta x^2$					
1							
•	ange in potential energy		1 - 1	-			
7) A 6.7 kg object moving a		,	•	7)			
	the initial kinetic energy	•	_				
•	B) 30 %	•	•				
$m1v0 = (m1+m2)V$; $V = m1v0/(m1+m2)$; change in $ke = 1/2(m1+m2)V^2 - 1/2m1v0^2$; % = change/initial $ke *100$							
8) A force $\vec{F} = 12 \hat{i} - 10 \hat{j}$ N acts on an object. How much work does this force do as the object							
moves from the origin to the point $\mathbf{r} = 14 \hat{\mathbf{i}} + 11 \hat{\mathbf{j}}$ m?							
A) 78 J	B) 278 J	C) 46 J	D) 58 J				
Work = dot product of F	and r.						

9)	9) A force $F = bx^3$ acts in the x -direction. How much work is done by this force in moving an				
	object from $x = 0.0$ m to $x = 0.0$				
	A) 22 J	B) 9 J	C) 30 J	D) 26 J	
	work = integral of Force v	v. r. t. x			
10)	Suppose we want a satelli	te to revolve around the	Earth 3 times a day. Wha	at should the radius	10)
	of its orbit be? (Neglect the	•	_	_	
	A) 2.11 x 10 ⁷ m	B) 0.49 x 10 ⁷ m	C) 2.03 x 10 ⁷ m	D) 6.09 x 10 ⁷ m	
	Use these two equations:		-		
11)	What is the ratio of the escape speed of a rocket launched from sea level and one launched				
	from Mt. Everest (altitude	•	C) 0 000/	D) 1 0014	
	A) 0.9993	B) 1.0007	C) 0.9986	D) 1.0014	
10\	use this formula twice : v				
12)	Calculate the average pow 0.70 m from rest to 5.0 rad	-	orm, solid disk of mass 4	.9 kg and radius	12)
	A) 5.2 W	B) 6.5 W	C) 7.8 W	D) 9.1 W	
	$P = 1/2 \text{ Iw}^2/\text{time}; I = 1/2\text{N}$,	C) 7.0 **	<i>D)</i>	
13)	A solid disk of radius 1.60		s without slipping to the	bottom of an	13)
10)	inclined plane. If the angu	_	11 0		
	of the inclined plane?	,		O	
	A) 4.98 m	B) 4.38 m	C) 5.98 m	D) 3.74 m	
	$mgh = 1/2*Iw^2+1/2*mv^2$	2			
14)	A 3.42 kg mass hanging ve	ertically from a spring or	the Earth (where $g = 9.8$	m/s ²) undergoes	14)
	simple oscillatory motion. If the spring constant is 12 N/m, find the period of oscillation of this				
	setup on the moon, where	$g = 1.6 \text{ m/s}^2$.			
	A) 2.51 s	B) 4.36 s	C) 5.70 s	D) 3.35 s	
	T = 2*pi*sqrt(m/k)				
15)	The period of a simple per	O	-		15)
		acceleration due to gravity on this planet? Assume that the length of the pendulum is 1.00 m.			
	A) 15.6 m/s ²	B) 17.0 m/s ²	C) 13.2 m/s^2	D) 14.2 m/s ²	
	From $T = 2*pi*sqrt(1/g)$, fi	_			
	How much would a lead b		in weigh if placed in oil v	with density	16)
	$Q = 0.93 \text{ g/cm}^3$? $(Q_{Pb} = 11)$.4g/cm ³)			
	A) 4.8 kg	B) 0.43 kg	C) 0.29 kg	D) 5.2 kg	
	$W = V^*$ density*g; Weight in the liquid, $W' = W$ - Weight displaced = W - V^* oil density*g				
17)	Calculate the pressure exe	=		on one foot. Assume	17)
	that the bottom of the pers		•	D) = 0 104 D	
	A) 2.3 x 10 ³ Pa	B) 2.3 x 10 ⁴ Pa	C) $5.8 \times 10^4 \text{ Pa}$	D) 5.3 x 10 ⁴ Pa	
40)	P = F/A		. 1	4.D	40)
18)	A constant-volume gas thermometer is filled with air whose pressure is 104 Pa at the triple point of water. What would the pressure be at 185 K?				18)
	•	•		D) 154 Da	
	A) 486 Pa	B) 6.51 x 10 ⁻³ Pa	C) 70.4 Pa	D) 154 Pa	
10\	From $PV = nRT$, two states can be related as: $P2V2/T2 = P1V1/T1$, where $V1 = V2$ An ideal gas is in a closed container. If its pressure is 132 Pa initially, and its temperature is				10)
17)	20.0° C, what is its pressur			s temperature is	19)
	A) 44 Pa	B) 116 Pa	C) 150 Pa	D) 396 Pa	

Use PV = nRT for two states

20) 0.20 g of hydrogen gas are held in a rigid container. The temperature of the gas is changed					20)	
1	from 50 K to 350 K. How much heat is needed?					
	A) 370 J	B) 750 J	C) 250 J	D) 500 J		
(Q = m*c*tempchange					
21) A 24.0 kg sample of ice is at 0.00° C. How much heat is needed to melt it? (For water						
$L_f = 334 \text{ kJ/kg}$ and $L_v = 2257 \text{ kJ/kg.}$						
	A) 0.00 kJ	B) 8.02 x 10 ³ kJ	C) 2.19 x 106 kJ	D) 5.42 x 104 kJ		
	Q = mLf					
22) A system has a heat source supplying heat at a rate of 149 W and is doing work at a rate of						
104.3 W. At what rate is the internal energy of the system changing?						
	A) -44.7 W	B) 149 W	C) 44.7 W	D) 253.3 W		

Answer Key Testname: SAMPLEQUESTIONSFINAL

- 1) C 2) A 3) A 4) D

- 5) C 6) B 7) D 8) D

- 9) A 10) C 11) B 12) B
- 13) A
- 14) D
- 15) D
- 16) A
- 17) B 18) C
- 19) C
- 20) A
- 21) B 22) C