Explosions and collisions obey some surprisingly simple laws that make problem solving easier when comparing the situation before and after an interaction.

Chapter Goal: To introduce the ideas of impulse and momentum and to learn a new problem-solving strategy based on conservation laws.
Chapter 9. Impulse and Momentum

Topics:

• Momentum and Impulse
• Solving Impulse and Momentum Problems
• Conservation of Momentum
• Inelastic Collisions
• Explosions
• Momentum in Two Dimensions
Momentum

After the collision

What is the velocity of ball A after the collision? ball B?
What is conserved during the collision?

MOMENTUM

\[\vec{p} = m \vec{v} \]

The total momentum is the sum of momentum of ball A and momentum of ball B.
Momentum

The total momentum of the system is conserved during the collision:

\[m_A v_{A,i} = m_A v + m_B u \]

- Momentum is a vector. It has the same direction as corresponding velocity.
- General expression for the momentum conservation: the total momentum before the collision is equal to the total momentum after the collision
Momentum

- General expression for the momentum conservation: the total momentum before the collision is equal to the total momentum after the collision.

\[
\mathbf{p}_A + \mathbf{p}_B = \mathbf{p}_A' + \mathbf{p}_B'
\]

Usually this equation is written in terms of components.
Example:

After the collision the balls are moving together (have the same velocity). What is their velocity?

Momentum before the collision: \(p_i = m_A v_{A,i} = 10 \frac{kg \cdot m}{s} \)

Momentum after the collision: \(p_f = (m_A + m_B)v = 5v \)

Conservation of momentum: \(p_i = p_f \)

\[10 = 5v \quad v = 2 m / s \]
Why do we have conservation of total momentum?

Newton’s second law:

\[\vec{F}_{\text{net}} = m\vec{a} \]

Acceleration:

\[\vec{a} = \frac{d\vec{v}}{dt} \]

Then

\[\vec{F}_{\text{net}} = m \frac{d\vec{v}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{p}}{dt} \]

After integration

\[\Delta \vec{p} = \int_{t_1}^{t_2} \vec{F}_{\text{net}} dt \]

The area under \(\vec{F}_{\text{net}}(t) \) curve.

It is called IMPULSE, J.

\[\vec{J} = \int_{t_1}^{t_2} \vec{F}_{\text{net}} dt \]

The impulse of the force is equal to the change of the momentum of the object.

\[\Delta \vec{p} = \vec{J} \]
\[p_i = m v_{ix} \]
\[p_f = m v_{fx} < 0 \]

\[J_x = p_f - p_i < 0 \]
The forces during the collision are an action/reaction pair.

Newton’s third law:

\[F_{x,1on2} = -F_{x,2on1} \]

Then

\[\int_{t_1}^{t_2} F_{x,1on2} dt = -\int_{t_1}^{t_2} F_{x,2on1} dt \]

\[m_2v_{fx,2} - m_2v_{ix,2} = -\left(m_1v_{fx,1} - m_1v_{ix,1} \right) \]
The forces during the collision are an action/reaction pair.

The law of conservation of momentum

\[m_2 v_{fx,2} - m_2 v_{ix,2} = -\left(m_1 v_{fx,1} - m_1 v_{ix,1} \right) \]

\[m_1 v_{ix,1} + m_2 v_{ix,2} = m_1 v_{fx,1} + m_2 v_{fx,2} \]

\[p_{ix,1} + p_{ix,2} = p_{fx,1} + p_{fx,2} \]

\[p_{ix,total} = p_{fx,total} \]
Momentum

The law of conservation of momentum:

The total momentum of an isolated system (no external forces) does not change.

Interactions within system do not change the system’s total momentum

\[\vec{p} = m \vec{v} \]

\[m_A \vec{v}_{A,i} + m_B \vec{v}_{B,i} = m_A \vec{v}_{A,f} + m_B \vec{v}_{B,f} \]
The ball is dropped onto a hard floor:

- The ball is not an isolated system (interaction with the floor)
- No conservation of momentum for the ball
- Initial momentum is $\vec{p}_i = m\vec{v}_i$
- Final momentum (after collision) is $\vec{p}_f = m\vec{v}_f$
- The ball + the floor is an isolated system
- The total momentum (ball + floor) is conserved
Example: Find v_{2x}

Before:
- $x_0 = 0 \text{ m}$
- $(v_{0x})_B = 0 \text{ m/s}$
- $a_x = 1.0 \text{ m/s}^2$
- $m_B = 75 \text{ kg}$
- $(v_{1x})_B = 8.0 \text{ m}$
- $(v_{1x})_C = 0 \text{ m/s}$
- $m_C = 25 \text{ kg}$

After:
- $(v_{2x})_B = (v_{2x})_C = v_{2x}$

Motion with constant acceleration:

$$ (v_{1x,B})^2 = 2a_x x_1 = 16 $$

$$ v_{1x,B} = 4 \text{ m/s} $$

Isolated system

Momentum before the “collision”:

$$ p_{i,total} = m_B v_{1x,B} + m_C v_{1x,C} = m_B v_{1x,B} = 75 \cdot 4 = 300 \frac{\text{kg} \cdot \text{m}}{\text{s}} $$

Momentum after the “collision”:

$$ p_{f,total} = m_B v_{2x,B} + m_C v_{2x,C} = (m_B + m_C)v_{2x} = 100v_{2x} $$

Conservation of momentum:

$$ p_{f,total} = p_{i,total} $$

$$ 100v_{2x} = 300 $$

$$ v_{2x} = 3 \text{ m/s} $$
Perfectly inelastic collision:

A collision in which the two objects stick together and move with a common final velocity.

Before:

\[m_1 = 200 \text{ g}, \quad (v_{ix})_1 = 3.0 \text{ m/s}, \quad (v_{ix})_2 \quad \text{and} \quad m_2 = 400 \text{ g} \]

\[p_{i,\text{total}} = m_1 v_{ix,1} + m_2 v_{ix,2} \]

After:

\[v_{fx} = -0.50 \text{ m/s} \]

\[p_{f,\text{total}} = (m_1 + m_2)v_{fx} \]

Find: \((v_{ix})_2\)

\[v_{ix,2} = \left(\frac{m_1}{m_2} + 1 \right)v_{fx} - \frac{m_1}{m_2}v_{ix,1} = -\frac{3}{2} \cdot 0.5 - \frac{3}{2} = -2.25 \text{ m/s} \]
Chapter 9. Summary Slides
General Principles

Law of Conservation of Momentum

The total momentum $\vec{P} = \vec{p}_1 + \vec{p}_2 + \cdots$ of an isolated system is a constant. Thus

$$\vec{P}_t = \vec{P}_i$$

Newton’s Second Law

In terms of momentum, Newton’s second law is

$$\vec{F} = \frac{d\vec{p}}{dt}$$
General Principles

Solving Momentum Conservation Problems

MODEL Choose an isolated system or a system that is isolated during at least part of the problem.

VISUALIZE Draw a pictorial representation of the system before and after the interaction.

SOLVE Write the law of conservation of momentum in terms of vector components:

\[
(p_{tx})_1 + (p_{tx})_2 + \cdots = (p_{tx})_1 + (p_{tx})_2 + \cdots
\]

\[
(p_{ty})_1 + (p_{ty})_2 + \cdots = (p_{ty})_1 + (p_{ty})_2 + \cdots
\]

ASSESS Is the result reasonable?
Important Concepts

Momentum \(\vec{p} = m\vec{v} \)

Impulse \(J_x = \int_{t_i}^{t_f} F_x(t) \, dt = \) area under force curve

Impulse and momentum are related by the impulse-momentum theorem

\[\Delta p_x = J_x \]

This is an alternative statement of Newton’s second law.
Important Concepts

System A group of interacting particles.

Isolated system A system on which there are no external forces or the net external force is zero.

Before-and-after pictorial representation

- Define the system.
- Use two drawings to show the system before and after the interaction.
- List known information and identify what you are trying to find.
Applications

Collisions Two or more particles come together. In a perfectly inelastic collision, they stick together and move with a common final velocity.

Explosions Two or more particles move away from each other.

Two dimensions No new ideas, but both the x- and y-components of P must be conserved, giving two simultaneous equations.
Applications

Momentum bar charts display the impulse-momentum theorem $p_{fx} = p_{ix} + J_x$ in graphical form.
The cart’s change of momentum is

A. 30 kg m/s.
B. 10 kg m/s.
C. –10 kg m/s.
D. –20 kg m/s.
E. –30 kg m/s.
The cart’s change of momentum is

A. 30 kg m/s.
B. 10 kg m/s.
C. –10 kg m/s.
D. –20 kg m/s.
E. –30 kg m/s.
A 10 g rubber ball and a 10 g clay ball are thrown at a wall with equal speeds. The rubber ball bounces, the clay ball sticks. Which ball exerts a larger impulse on the wall?

A. They exert equal impulses because they have equal momenta.
B. The clay ball exerts a larger impulse because it sticks.
C. Neither exerts an impulse on the wall because the wall doesn’t move.
D. The rubber ball exerts a larger impulse because it bounces.
A 10 g rubber ball and a 10 g clay ball are thrown at a wall with equal speeds. The rubber ball bounces, the clay ball sticks. Which ball exerts a larger impulse on the wall?

A. They exert equal impulses because they have equal momenta.
B. The clay ball exerts a larger impulse because it sticks.
C. Neither exerts an impulse on the wall because the wall doesn’t move.

☑️ D. The rubber ball exerts a larger impulse because it bounces.
Objects A and C are made of different materials, with different “springiness,” but they have the same mass and are initially at rest. When ball B collides with object A, the ball ends up at rest. When ball B is thrown with the same speed and collides with object C, the ball rebounds to the left. Compare the velocities of A and C after the collisions. Is \(v_A \) greater than, equal to, or less than \(v_C \)?

Before

- B
- \(A \)
- \(m_A = m_C \)

After

- \(v = 0 \)
- \(v_A \)
- \(v_C \)

A. \(v_A > v_C \)

B. \(v_A < v_C \)

C. \(v_A = v_C \)
Objects A and C are made of different materials, with different “springiness,” but they have the same mass and are initially at rest. When ball B collides with object A, the ball ends up at rest. When ball B is thrown with the same speed and collides with object C, the ball rebounds to the left. Compare the velocities of A and C after the collisions. Is v_A greater than, equal to, or less than v_C?

Before

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$m_A = m_C$</td>
</tr>
</tbody>
</table>

After

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$v = 0$</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

A. $v_A > v_C$
B. $v_A < v_C$
C. $v_A = v_C$

B. $v_A < v_C$
The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick together and continue on with velocity \(v_f \). Which of these statements is true?

A. \(v_f = v_2 \).
B. \(v_f \) is less than \(v_2 \).
C. \(v_f \) is greater than \(v_2 \), but less than \(v_1 \).
D. \(v_f = v_1 \).
E. \(v_f \) is greater than \(v_1 \).
The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick together and continue on with velocity v_f. Which of these statements is true?

A. $v_f = v_2$.
B. v_f is less than v_2.
C. v_f is greater than v_2, but less than v_1.
D. $v_f = v_1$.
E. v_f is greater than v_1.

\checkmark C. v_f is greater than v_2, but less than v_1.
An explosion in a rigid pipe shoots out three pieces. A 6 g piece comes out the right end. A 4 g piece comes out the left end with twice the speed of the 6 g piece. From which end does the third piece emerge?

A. Right end
B. Left end
An explosion in a rigid pipe shoots out three pieces. A 6 g piece comes out the right end. A 4 g piece comes out the left end with twice the speed of the 6 g piece. From which end does the third piece emerge?

A. Right end

B. Left end