Chapter 4. Kinematics in Two Dimensions

A car turning a corner, a
basketball sailing toward the
hoop, a planet orbiting the
sun, and the diver in the
photograph are examples of
two-dimensional motion or,
equivalently, motion in a
plane.

Chapter Goal: To learn to
solve problems about motion
in a plane.
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Chapter 4. Kinematics in Two Dimensions

Topics:

* Acceleration

* Kinematics in Two Dimensions
* Projectile Motion

* Relative Motion

e Uniform Circular Motion

* Velocity and Acceleration in Uniform
Circular Motion

* Nonuniform Circular Motion and Angular
Acceleration
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Kinematics in Two Dimensions

Average velocity: vV =

/ Trajectory
Point 2 (xz, yz)
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Kinematics in Two Dimensions:
Instantaneous Velocity

The instantaneous Point B moves closer
velocity v is tangent (o point A as Ar — 0.

)}
to the curve at A. -

Ar

=~
I

At—0

As At — 0, A¥ becomes
tangent to the curve at A.
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Kinematics in Two Dimensions

«Don’t confuse these two graphs! ..,

s

[ &
Position-versus-time graph Trajectory
Vv v
The value of the The direction of the
- velocity v is the velocity is tangent
slope of the curve. to the curve.
t X

Kinematics in Two Dimensions:
Instantaneous Acceleration

Average acceleration:
Av
Qe =77
Instantaneous acceleration:
AV
At At—0

v

a=

Average

dt acceleration
At At—0
(motion along a X
line)
5 6
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Kinematics in Two Dimensions: Instantaneous Acceleration
3. The acceleration
Motion along a line: acceleration results in change of speed (the magnitude (\J_ccm{‘ |>ﬂi"_l>_\ in the
irection of Av.
of VelOCIty) l‘.‘l 2. Both speed and direction
. . . . i " are changing. @ has components
Motion in a plane: acceleration can change the speed (the magnitude of parallel and perpendicular to 7.
velocity) and the direction of velocity.
The parallel
component results in
a change of speed. .
% Instantaneous velocity +
y 5 /
T e =
Y where only the speed changes, /
- a is parallel or opposite to v. A
g, < . Ay '
- c a =— 5. Only the direction is changing ...
R a, At at this point, not the speed, Thus 4. The acceleration vector can
a Ar—0 a is perpendicular to v. be decomposed into @, and a
o
The perpendicular
Instantaneous component results in
acceleration a change of direction.
7 8
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A Projectile is an object that moves in two dimensions (in a

plane) under the influence of only the gravitational force.

6 m/s
i —
—10°

Start ﬁ - ISO m = Q

A Projectile is an object that moves in two dimensions with

free fall acceleration @ =g

a_=0 -motion along x-axis — with zero acceleration —
constant velocity

3m v = constant
4 —-g=-98™ - motion along y-axis — free fall motion
d ' s with constant acceleration
ﬁ/ 20°
% 15° X 10
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Example: Find the distance AB 2
v, =constant=v, =v, cos& x=vy, t=vicos [ Xap = ;sm 20
v 02 vy = Viy iy = Vi Launch angles of 6 and
— — D s T. al =Y 2' o T ¥ \.
Point A . Yi =Y. =0 2 2 500 4 750 90 f) give the same range
: = Lan t #E
POlntB 'yﬁnal =yB =0 then yﬁnal _Vi’ytAB_gT vi,ytAB =g% 400_ 13 é Maximu]ﬂ range
g 300 s achieved at 45°.
v, v, sin
byp = g’y = 200 -
% " 004/ s\
k= en
‘:_ . =vi  cosf= 0 T T T T T x(m)
I AB ~ VitAB 0 200 400 600 800 1000
il i 2v?2 p?
A Vie=V;c0s0 B ="t gsinfdcos@ =—sin28 Vo = 99 m/s
g g

1
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Example of Projectile Motion

FIGURE 4.15 The parabolic trajectory of a
bouncing ball.

The ball’s trajectory
- between bounces is
a parabola.
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EXAMPLE 4.4 Don’t try this at home!
QUESTION:

EXAMPLE 4.4 Don’t try this at home!

A stunt man drives a car off a 10.0-m-high cliff at a speed of

20.0 m/s. How far does the car land from the base of the cliff?
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EXAMPLE 4.4 Don’t try this at home!

VISUALIZE The pictorial representation, shown in FIGURE 4.18, is
very important because the number of quantities to keep track of
in projectile motion problems is quite large. We have chosen to
put the origin at the base of the cliff.

FIGURE 4.18 Pictorial representation for the car of Example 4.4.
y

Xps Yoo To

Voxs Yoy

Known Find
X=0m v, =0m/s 1, =0s X
Yo=100m vy, =v,=20.0m/s

a,=0m/s> a,= —g y,=0m

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 4.4 Don’t try this at home!

The assumption that the car is
moving horizontally as it leaves the cliff leads to v,, = v, and
Vo, = Om/s. A motion diagram is not essential in projectile
motion problems because we already know that the projectile fol-
lows a parabolic trajectory withd = —gJ.

FIGURE 4.18 Pictorial representation for the car of Example 4.4.

v

X Yoo fo

Vox Voy

Known Find
Xo=0m v, =0m/s 7 =0s X,
Vo= 10.0m v, = v, =20.0m/s

a,=0m/s> a,=—g y,=0m
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EXAMPLE 4.4 Don’t try this at home!

SOLVE Each point on the trajectory has x- and y-components of
position, velocity, and acceleration but only one value of time.
The time needed to move horizontally to x; is the same time
needed to fall vertically through distance y,. Although the hori-
zontal and vertical motions are independent, they are con-
nected through the time 7. This is a critical observation for
solving projectile motion problems. The kinematics equations are

X, = X T vty — fp) = wly

N i 2 _ 12
yi =0=y + vo,(ty — 1) —38(fi — 1)” = Yo — 281
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EXAMPLE 4.4 Don’t try this at home!

We can use the vertical equation to determine the time 7, needed to
fall distance vy

A 2(10.0 m) e
= A|—=7/———5=1435
"N g TV 980m/s2

We then insert this expression for  into the horizontal equation to
find the distance traveled:

X = vof; = (20.0m/s)(1.43s) = 28.6 m
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EXAMPLE 4.4 Don’t try this at home!

AssSEsS The cliff height is =33 ft and the initial speed is v, =
40 mph. Traveling x; = 29 m = 95 ft before hitting the ground
seems reasonable.
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Problem-Solving Strategy: Projectile Motion
Problems

The acceleration is known: ¢, = 0 and @, = —g. Thus the problem is one
of two-dimensional kinematics. The kKinematic equations are
X =x, + v, At Y=y + v, At — 1g(An)?
Vi = Vi, = constant Viy = Viy — 8 At

At is the same for the horizontal and vertical components of the motion. Find A¢
from one component, then use that value for the other component.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.




Relative Motion Relative Motion

FIGURE 4.29 Velodities ¥ and V', as If we know an object’s velocity measured in one reference

measured in frames S and S, are related . .

by vector addition. frame, S, we can transform it into the velocity that

L eean would be measured by an experimenter in a different
reference frame, S, using the Galilean transformation of
velocity.
r
V=3"+V or V=y-V

Or, in terms of components,

?ﬁ?;:i Z Vi = V.:' + V.\' V.\" =V V.\'
or
¥ vo=v.+V, vi=v, =V,
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EXAMPLE 4.8 A speeding bullet EXAMPLE 4.8 A speeding bullet
QUESTION: MODEL Assume that all motion is along the x-axis. Let the earth
be frame S and a frame attached to the police car be S’. Frame S’
EXAMPLE 4.8 A speeding bullet moves relative to frame S with V, = 50 m/s.

The police are chasing a bank robber. While driving at 50 m/s,
they fire a bullet to shoot out a tire of his car. The police gun
shoots bullets at 300 m/s. What is the bullet’s speed as measured
by a TV camera crew parked beside the road?
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EXAMPLE 4.8 A speeding bullet

SOLVE The bullet is the moving object that will be observed from
both frames. The gun is in frame S’, so the bullet travels in this
frame with v, = 300 m/s. We can use Equation 4.24 to transform
the bullet’s velocity into the earth reference frame:

v, = v, + V,=300m/s + 50 m/s = 350 m/s

Motion in a Circle

26
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Kinematics in Two Dimensions: Uniform Circular Motion: Example:
Motion with Constant Speed 0 nnbd <nd
What is the arc length for & =45",90",10" if r=1m
The speed (magnitude of velocity) is the same
The velocity is tangent to the , 2” T
- The vty v 2 45" = 45" 25 rad =7 rad = 0.78 rad
. : : 27r 2 z
Period: T =—— Particle 90" =90' =~ rad =~ rad =1.57 rad
- % Arc length 360 2
[ \ #
ﬂ I/’ Angul z s 27 z
\ S / postion 10° =10° 25 rad = = rad = 0.174 rad
/ The position of the particle is ek N
. 0 B
, \" characterized by angle (or by arc A
length) Arclength: S =16
Pasticle Arclength: §=r@
e Are r
pre length L. S5 = T =0.78m S = ? =0.174m
Aol . , where angle @ isin
guiar d zr
position 0 RADIANS 0 Sop = 7 =1.5Tm
360
O™~ Conter of ¥ lrad = =57.3"
circular motion 2z 27 28

ihing as Pearson Addison-Wesley.
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. . . . . . . . . . = 2
Kinematics in Two Dimensions: Uniform Circular Motion: Uniform Circular Motion s =t 0= =
Motion with Constant Speed y

. . . v
The speed (magnitude of velocity) is the same =yt w=—
The velocity is tangent to the Partic]e\ r
circle. The velocity vectors Arc length 6=t
" are all the same length 0 - a)t
vy 27r Angular 5 s
w=— T="F position !
r v 0
X
O™ Center of 0s
circular motion
Then Then =t
t
T x=rcos@=rcos(ax) -
0=—
T 4
1
Panicle\
CIERER y=rsin@=rsin(wxt) -
Angular 2 N 0
position
0 2 2 2 o 2 2 2 2
. x“+y =rsin“(at)+r-cos”(wt)=r" o
O™ Center of
circular motion . . 29 . . - . 30
| ihing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-W¢ -1
w is positive for a
counterclockwise rotation. 9 = a)t
Uniform Circular Motion
6 (rad)
67 <0 FIGURE 4.34 A particle moves with
>0 angular velocity o.
47 ) i,
) Position at
=0 time 1, = f; + At
211
®
0 T T T T T 1 (s)
0 1 2 3 4 5 6 .
Position
: o w (rad/s) K A6 at time 1,
w is negative for a -
clockwise rotation. 2 1
1
y | X
T | 6
I
Particl I
RS s 0 | : ; : : 1 (s) I A6 db ( l locity)
W= 11mm———=— angular velocity
, 1 2 3 4 5 6 A0 Ar o dr © ’
Ang‘L}lar L\ 1 1
position , Positive angle T E—
. 0, =0, + wAr (uniform circular motion)
O™ Center of 39
circular motion o X . . o .
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EXAMPLE 4.13 At the roulette wheel

QUESTIONS:

EXAMPLE 4.13 At the roulette wheel

A small steel roulette ball rolls ccw around the inside of a 30-cm-

diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

a. What is the ball’s angular velocity?
b. What is the ball’s position at 7 = 2.0 s? Assume #; = 0.
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EXAMPLE 4.13 At the roulette wheel

SOLVE a. The period of the ball’s motion, the time for 1 rev, is
T = 0.60 s. Angular velocity is positive for ccw motion, so

_ 2mrad 2 rad

= = 10.47 rad/s
T 0.60 s

w
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EXAMPLE 4.13 At the roulette wheel

b. The ball starts at ; = Orad. After Ar = 2.0 s, its position is
given by Equation 4.30:

6y = Orad + (10.47 rad/s)(2.0s) = 20.94 rad

where we’ve kept an extra significant figure to avoid round-off
error. Although this is a mathematically acceptable answer, an
observer would say that the ball is always located somewhere
between 0° and 360°. Thus it is common practice to subtract an
integer number of 27 rad, representing the completed revolu-
tions.
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EXAMPLE 4.13 At the roulette wheel

Because 20.94/27m = 3.333, we can write
f; = 20.94 rad = 3.333 X 27 rad
= 3 X 27 rad + 0.333 X 27 rad
=3 X 27 rad + 2.09 rad

In other words, at 7 = 2.0 s the ball has completed 3 rev and is
2.09rad = 120° into its fourth revolution. An observer would
say that the ball’s position is 6y = 120°.
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Uniform Circular Motion: Acceleration

. AV . AF
a=— V=—
AtAt—)O AtAt—)O
Ar, =v At
2 = VA
G=r2"N _Anh—ah
At (At)y’

Direction of acceleration is the
same as direction of vector
(toward the center) CB = AF, - AF,

The magnitude of acceleration:
CB Ar¢g ANr(m-20) Ar@ vAtwt p?
a= 3 = 3 = 2 = 3 = 3 =va=—
(Ar)"  (Ar) (Ar) (At)*  (Ar) ra
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Uniform Circular Motion: Acceleration w=2
r

The instantaneous
velocity V is perpendicular

centripetal to @ at all points.

acceleration

The magnitude of acceleration:

2
14 2
a=—=Wr=va
r

3
,2

= Vv . . .
a= e toward center of circle (centripetal acceleration)

38
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EXAMPLE 4.14 The acceleration of a Ferris
wheel

QUESTION:

ExAMPLE 4.14 The acceleration of a Ferris wheel

A typical carnival Ferris wheel has a radius of 9.0 m and rotates 4.0 times per minute.

What magnitude acceleration do the riders experience?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 4.14 The acceleration of a Ferris
wheel

MODEL Model the rider as a particle in uniform circular motion.
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EXAMPLE 4.14 The acceleration of a Ferris
wheel

SOLVE The period is T = 4 min = 15 s. From Equation 4.25, a rider’s speed is

~ 2mr  2w(9.0m)

= = = 3.77 m/s
v - 5. m/s
Consequently, the centripetal acceleration is
a 3.77 m/s)*
a= L .17 vs) = 1.6 m/s’

r 9.0 m
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Chapter 4. Summary Slides
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General Principles

The instantaneous velocity
v = drldt y

is a vector tangent to the trajectory.

The instantaneous acceleration is L 4 a,

a = dv/dt

a), the component of @ parallel to
v, is responsible for change of speed. a |, the component of ¢
perpendicular to v, is responsible for change of direction.
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General Principles

Relative motion

Inertial reference frames move
relative to each other with constant
velocity V. Measurements of position
and velocity measured in frame S are
related to measurements in frame S’
by the Galilean transformations:

x'=x—-Vt 4

y=y—Vt V)
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Ve T V_\'

v — V.




Important Concepts

Uniform Circular Motion i

Angular velocity o = df/dt.
Vy and w are constant:

v, = wr
The centripetal acceleration points toward the center of the circle:

2
v 5
a=—=wvr
r

It changes the particle’s direction but not its speed.
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Important Concepts

Nonuniform Circular Motion v
da,
Angular acceleration & = dw/dt.
The radial acceleration ‘ a (,,’
V2 5
B = == = W
B

changes the particle’s direction. The tangential component
a, = ar

changes the particle’s speed.
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Applications

Kinematics in two dimensions

If @ is constant, then the x- and y-components of motion
are independent of each other.

xp = x; + v, Ar + 3a, (Ar)?
Y=y + v At + za,(An)?
Ve, = Vi, + a, At
vy = vy + a,At
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Applications

Projectile mation occurs if the object moves under the influence of only
gravity. The motion is a parabola.

¢ Uniform motion in the horizontal
direction with vy, = vycos6.

¢ Free-fall motion in the vertical
direction with a, = —g and vy, = vysinf.

* The x and y kinematic equations
have the same value for Ar.
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Applications

Circular motion kinematics

2mr 2
Period 7 = 2 2
v ®

A
Angular position 6 = —
-

w; = w; + alt
ﬂf = 6]' + C!)]'Af + %a(AI)z

of = 0! + 2aA6
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Applications

Angle, angular velocity, and angular ]
acceleration are related graphically.
* The angular velocity is the slope \
of the angular position graph. t
* The angular acceleration is the slope ¢
of the angular velocity graph.
t
o3
l lr
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Chapter 4. Questions
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This acceleration will cause the particle to
v
ﬁ Zl’

. slow down and curve downward.
. slow down and curve upward.

. speed up and curve downward.

. speed up and curve upward.

. move to the right and down.

Mmoo 0w
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This acceleration will cause the particle to

v
< .a

P g

. slow down and curve downward.
. slow down and curve upward.
. speed up and curve downward.
. speed up and curve upward.
move to the right and down.

v

Mo QW
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During which time interval is the particle
described by these position graphs at

rest?

A.0-1s | |
B.1-2s

C.2-3s T S S T ]

N

D.34s
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1(s)

During which time interval is the particle
described by these position graphs at

D.34s

rest?
A.O0-ls | |
B.1-2s
VC. 2-3s O(i) 2 3 . £s) OT — r(s)

N
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A 50 g ball rolls off a table and lands 2 m
from the base of the table. A 100 g ball
rolls off the same table with the same
speed. It lands at a distance

A. less than 2 m from the base.
B. 2 m from the base.
C. greater than 2 m from the base.
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A 50 g ball rolls off a table and lands 2 m
from the base of the table. A 100 g ball
rolls off the same table with the same
speed. It lands at a distance

A. less than 2 m from the base.
¢/ B. 2 m from the base.
C. greater than 2 m from the base.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A plane traveling horizontally to the right at
100 m/s flies past a helicopter that is going
straight up at 20 m/s. From the helicopter’s
perspective, the plane’s direction and speed
are

. right and up, more than 100 m/s.
right and up, less than 100 m/s.
right and down, more than 100 m/s.
right and down, less than 100 m/s.
right and down, 100 m/s.

monwy
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A plane traveling horizontally to the right at
100 m/s flies past a helicopter that is going
straight up at 20 m/s. From the helicopter’s
perspective, the plane’s direction and speed
are

A. right and up, more than 100 m/s.
B. right and up, less than 100 m/s.
V C. right and down, more than 100 m/s.
D. right and down, less than 100 m/s.
E. right and down, 100 m/s.

v of plane relative to earth
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A particle moves cw around a circle at
constant speed for 2.0 s. It then reverses
direction and moves ccw at half the
original speed until it has traveled
through the same angle. Which is the
particle’s angle-versus-time graph?

(a) (b) (c) (d)
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A particle moves cw around a circle at
constant speed for 2.0 s. It then reverses
direction and moves ccw at half the
original speed until it has traveled
through the same angle. Which is the
particle’s angle-versus-time graph?
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Rank in order, from largest to smallest,
the centripetal accelerations (a,), to (a,),
of particles a to e.

2y
2v v
v f : i
(© @) (e)

(a) (b)

A @)y > (@), > (@), > (a,)g> (@),
B.(a,), > (a,).>(a,),=(a,).>(a,),
C. (@) = @), > (@), = (@), > (@)
D.(a),> (@), = (@), = (@), > (@),
E. (a,), > (a,),=(a,),> (a,).>(a,),
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Rank in order, from largest to smallest,
the centripetal accelerations (a,), to (a,),
of particles a to e.

3O

v
(a) (b) (© @) (e}

A.(a), > (a,).>(a,),>(a)y>(a,),
v/ B.@@),>(@).>(@),=(a).> (@),
C.(a)y = (@), > (@), = (@), > (a),
D.(a,), > (a,), = (a,). = (a,). > (a,)q
E. (a,), > (a,), = (@), > (a,), > (a,),
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The fan blade is slowing down. What are
the signs of ® and a.?

b

»

A. o is positive and o is positive.
B. o is negative and o is positive.
C. o is positive and o is negative.
D. o 1s negative and o is negative.
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The fan blade is slowing down. What are
the signs of ® and a?

A. ®is positive and o is positive.
¢/ B. o is negative and o is positive.

C. o is positive and o is negative.

D. o is negative and o is negative.
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