Chapter 2. Kinematics in One Dimension

In this chapter we study kinematics of motion in one dimension-motion along a straight line. Runners, drag racers, and skiers are just a few examples of motion in one dimension.

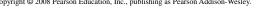
Chapter Goal: To learn how to solve problems about motion in a straight line.

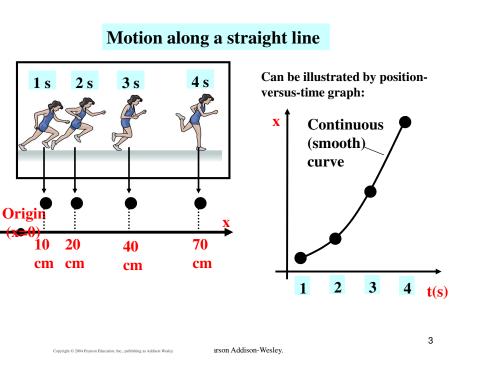
Chapter 2. Kinematics in One Dimension

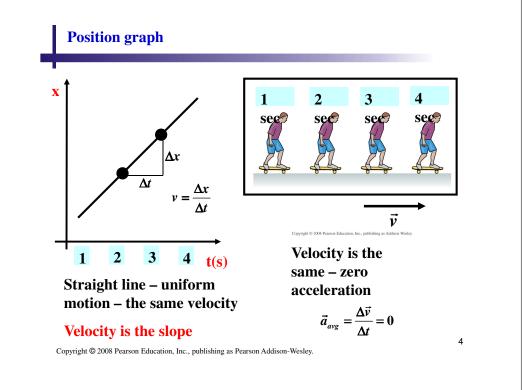
Topics:

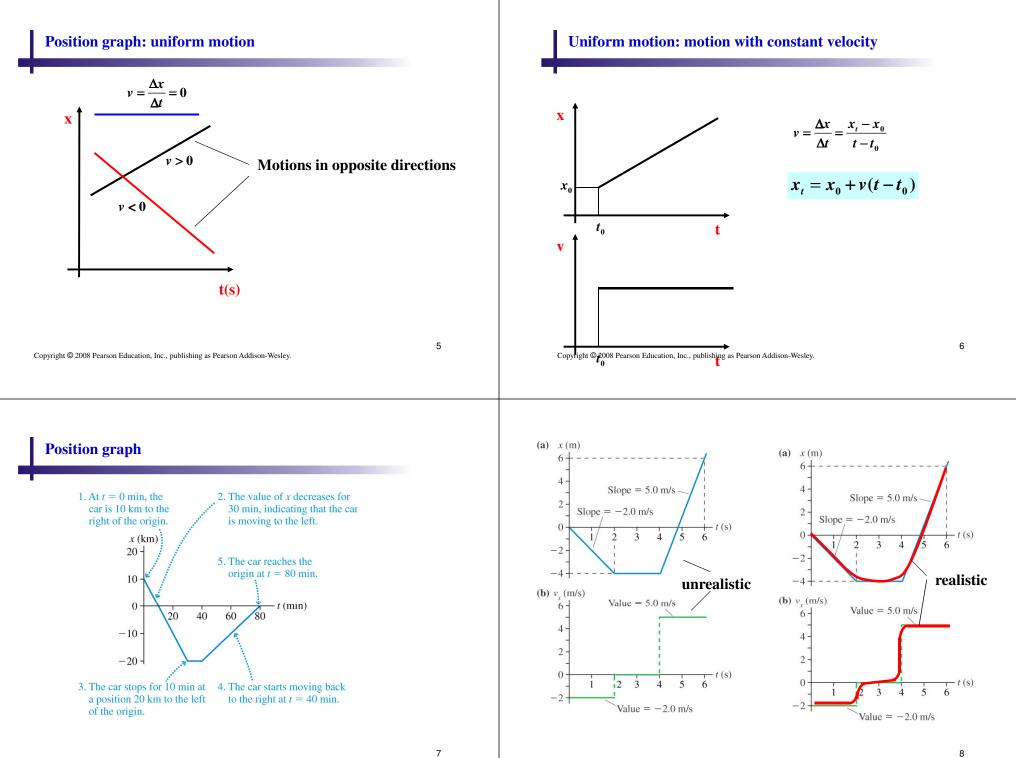
- Uniform Motion
- Instantaneous Velocity
- Finding Position from Velocity
- Motion with Constant Acceleration
- Free Fall
- Motion on an Inclined Plane •
- Instantaneous Acceleration

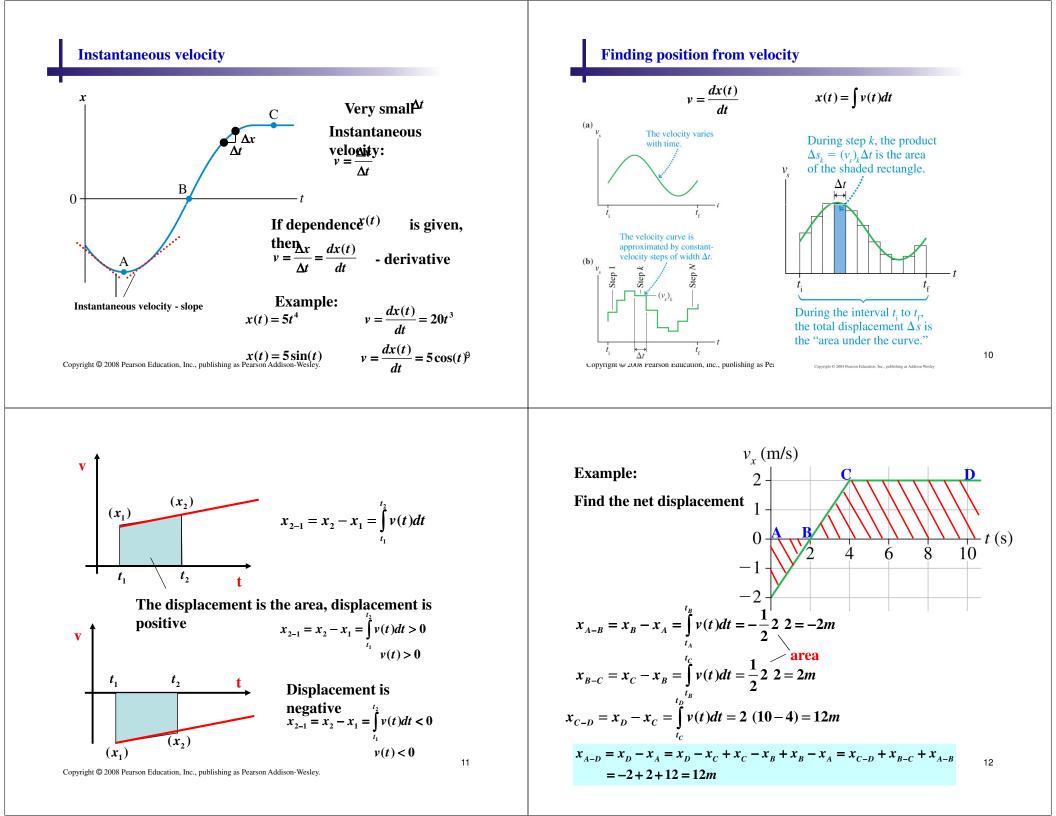
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

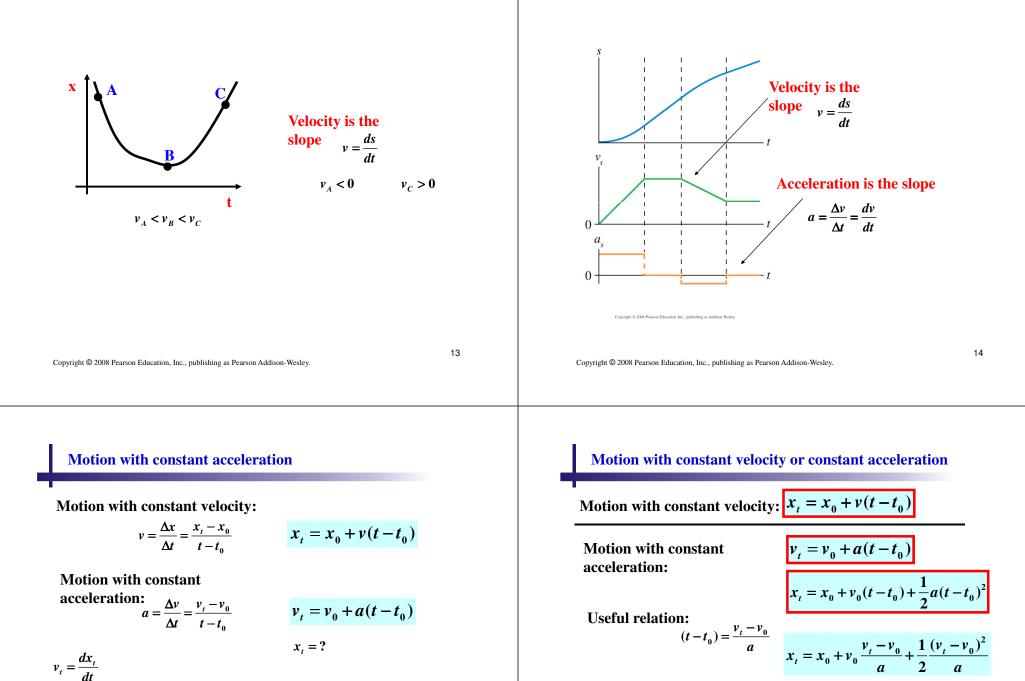


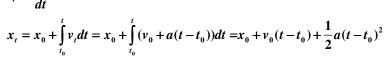








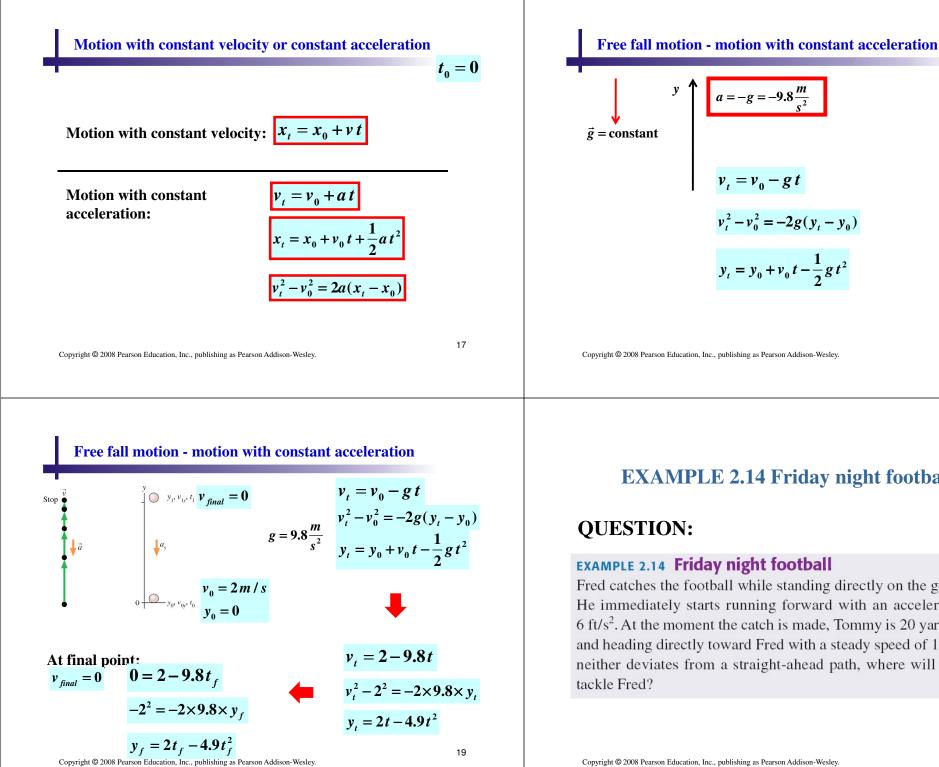




then

16

 $-v_0^2 = 2a(x_t - x_0)$



18

EXAMPLE 2.14 Friday night football

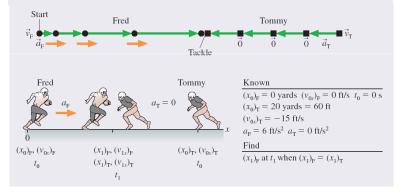
Fred catches the football while standing directly on the goal line. He immediately starts running forward with an acceleration of 6 ft/s^2 . At the moment the catch is made, Tommy is 20 yards away and heading directly toward Fred with a steady speed of 15 ft/s. If neither deviates from a straight-ahead path, where will Tommy

EXAMPLE 2.14 Friday night football

MODEL Represent Fred and Tommy as particles.

EXAMPLE 2.14 Friday night football

VISUALIZE The pictorial representation is shown again in **FIG-URE 2.27**. With two moving objects we need the additional subscripts F and T to distinguish Fred's symbols and Tommy's symbols.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 2.14 Friday night football

SOLVE We want to find *where* Fred and Tommy have the same position. The pictorial representation designates time t_1 as *when* they meet. The axes have been chosen so that Fred starts at $(x_0)_F = 0$ ft and moves to the right while Tommy starts at $(x_0)_T = 60$ ft and runs to the left with a *negative* velocity. The second equation of Table 2.2 allows us to find their positions at time t_1 . These are:

$$(x_1)_{\rm F} = (x_0)_{\rm F} + (v_{0x})_{\rm F}(t_1 - t_0) + \frac{1}{2}(a_x)_{\rm F}(t_1 - t_0)^2$$

= $\frac{1}{2}(a_x)_{\rm F}t_1^2$
 $(x_1)_{\rm T} = (x_0)_{\rm T} + (v_{0x})_{\rm T}(t_1 - t_0) + \frac{1}{2}(a_x)_{\rm T}(t_1 - t_0)^2$
= $(x_0)_{\rm T} + (v_{0x})_{\rm T}t_1$

EXAMPLE 2.14 Friday night football

Notice that Tommy's position equation contains the term $(v_{0x})_{T}t_{1}$, not $-(v_{0x})_{T}t_{1}$. The fact that he is moving to the left has already been considered in assigning a *negative value* to $(v_{0x})_{T}$, hence we don't want to add any additional negative signs in the equation. If we now set $(x_{1})_{F}$ and $(x_{1})_{T}$ equal to each other, indicating the point of the tackle, we can solve for t_{1} :

$$\frac{1}{2}(a_x)_{\rm F}t_1^2 = (x_0)_{\rm T} + (v_{0x})_{\rm T}t_1$$
$$\frac{1}{2}(a_x)_{\rm F}t_1^2 - (v_{0x})_{\rm T}t_1 - (x_0)_{\rm T} = 0$$
$$3t_1^2 + 15t_1 - 60 = 0$$

EXAMPLE 2.14 Friday night football

The solutions of this quadratic equation for t_1 are $t_1 = (-7.62 \text{ s}, +2.62 \text{ s})$. The negative time is not meaningful in this problem, so the time of the tackle is $t_1 = 2.62 \text{ s}$. We've kept an extra significant digit in the solution to minimize round-off error in the next step. Using this value to compute $(x_1)_F$ gives

 $(x_1)_{\rm F} = \frac{1}{2}(a_x)_{\rm F}t_1^2 = 20.6$ feet = 6.9 yards

Tommy makes the tackle at just about the 7-yard line!

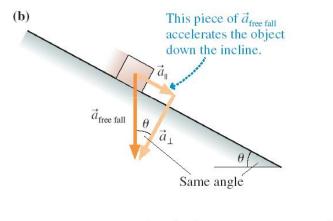
EXAMPLE 2.14 Friday night football

ASSESS The answer had to be between 0 yards and 20 yards. Because Tommy was already running, whereas Fred started from rest, it is reasonable that Fred will cover less than half the 20-yard separation before meeting Tommy. Thus 6.9 yards is a reasonable answer.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Motion on an Inclined Plane



 $a_s = \pm g \sin\theta \tag{2.25}$

EXAMPLE 2.17 Skiing down an incline

QUESTION:

EXAMPLE 2.17 Skiing down an incline

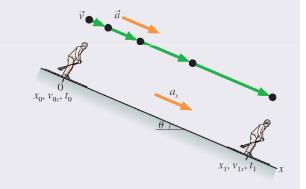
A skier's speed at the bottom of a 100-m-long, frictionless, snow-covered slope is 20 m/s. What is the angle of the slope?

EXAMPLE 2.17 Skiing down an incline

MODEL Represent the skier as a particle. Assume that air resistance is negligible. Assume that the slope is a straight line.

EXAMPLE 2.17 Skiing down an incline

VISUALIZE FIGURE 2.33 on the next page shows the pictorial representation of the skier. Notice that we've chosen the *x*-axis to be parallel to the motion. Straight-line motion is almost always easier to analyze if the motion is parallel to a coordinate axis.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 2.17 Skiing down an incline

SOLVE The motion diagram shows that the acceleration vector points in the positive *x*-direction. Thus the one-dimensional acceleration is $a_x = +g \sin \theta$. This is constant-acceleration motion. The third kinematic equation from Table 2.2 is

$$v_{1x}^{2} = v_{0x}^{2} + 2a_{x}\Delta x = 2g\sin\theta\Delta x$$

where we used $v_{0x} = 0$ m/s. Solving for $\sin \theta$, we find

$$\sin\theta = \frac{v_{1x}^2}{2g\Delta x} = \frac{(20 \text{ m/s})^2}{2(9.80 \text{ m/s}^2)(100 \text{ m})} = 0.204$$

Thus

$$\theta = \sin^{-1}(0.204) = 12^{\circ}$$

EXAMPLE 2.17 Skiing down an incline

ASSESS A 100-m-long slope and a speed of 20 m/s \approx 40 mph are fairly typical parameters for skiing. A 1° angle or an 80° angle would be unrealistic, but 12° seems plausible.

General Principles

Kinematicsdescribes motion in terms of position, velocity, and acceleration.General kinematic relationships are given mathematically by:Instantaneous velocity $v_s = ds/dt =$ slope of position graphInstantaneous acceleration $a_s = dv_s/dt =$ slope of velocity graphFinal position $s_f = s_i + \int_{t_i}^{t_f} v_s dt = s_i + \begin{cases} area under the velocity \\ curve from t_i to t_f \end{cases}$ Final velocity $v_{fs} = v_{is} + \int_{t_i}^{t_f} a_s dt = v_{is} + \begin{cases} area under the acceleration \\ curve from t_i to t_f \end{cases}$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

General Principles

Chapter 2. Summary Slides

Motion with constant acceleration is **uniformly accelerated motion**. The kinematic equations are:

$$v_{fs} = v_{is} + a_s \Delta t$$

$$s_f = s_i + v_{is} \Delta t + \frac{1}{2} a_s (\Delta t)^2$$

$$v_{fs}^2 = v_{is}^2 + 2a_s \Delta s$$

Uniform motion is motion with constant velocity and zero acceleration:

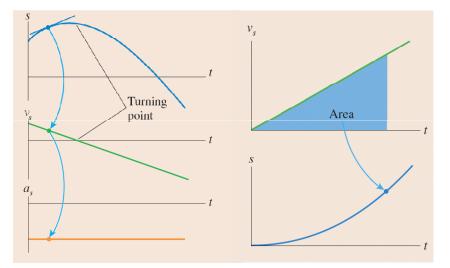
$$s_{\rm f} = s_{\rm i} + v_s \Delta$$

Important Concepts

Position, velocity, and acceleration are related **graphically.**

- The slope of the position-versus-time graph is the value on the velocity graph.
- The slope of the velocity graph is the value on the acceleration graph.
- *s* is a maximum or minimum at a turning point, and $v_s = 0$.
- Displacement is the area under the velocity curve.

Important Concepts



Applications

The sign of v_s indicates the direction of motion.

- $v_s > 0$ is motion to the right or up.
- $v_s < 0$ is motion to the left or down.

The sign of a_s indicates which way \vec{a} points, *not* whether the object is speeding up or slowing down.

- $a_s > 0$ if \vec{a} points to the right or up.
- $a_s < 0$ if \vec{a} points to the left or down.
- The direction of \vec{a} is found with a motion diagram.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Applications

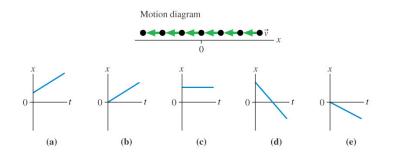
An object is **speeding up** if and only if v_s and a_s have the same sign. An object is **slowing down** if and only if v_s and a_s have opposite signs.

Free fall is constant-acceleration motion with

$$a_v = -g = -9.80 \text{ m/s}^2$$

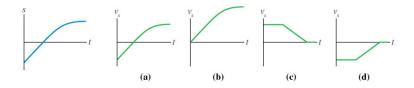
Motion on an inclined plane has $a_s = \pm g \sin \theta$. The sign depends on the direction of the tilt. **Chapter 2. Questions**

Which position-versus-time graph represents the motion shown in the motion diagram?

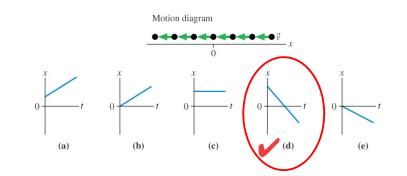


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Which velocity-versus-time graph goes with the position-versus-time graph on the left?

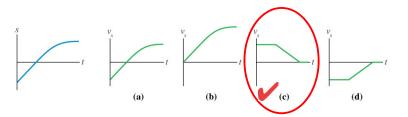


Which position-versus-time graph represents the motion shown in the motion diagram?

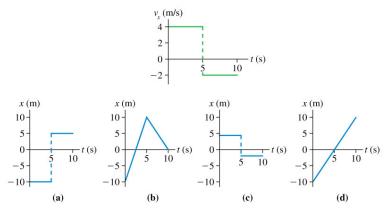


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Which velocity-versus-time graph goes with the position-versus-time graph on the left?

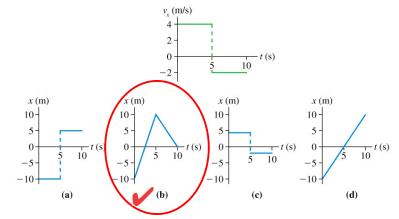


Which position-versus-time graph goes with the velocity-versus-time graph at the top? The particle's position at $t_i = 0$ s is $x_i = -10$ m.



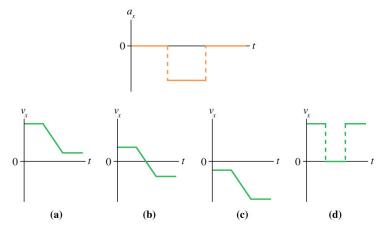
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Which position-versus-time graph goes with the velocity-versus-time graph at the top? The particle's position at $t_i = 0$ s is $x_i = -10$ m.



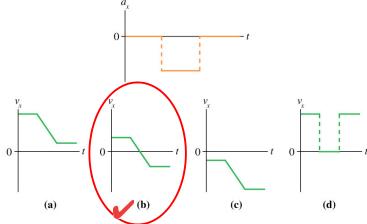
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Which velocity-versus-time graph or graphs goes with this acceleration-versustime graph? The particle is initially moving to the right and eventually to the left.



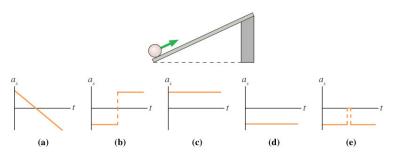
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Which velocity-versus-time graph or graphs goes with this acceleration-versustime graph? The particle is initially moving to the right and eventually to the left.

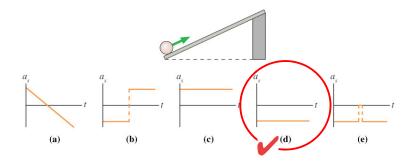


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The ball rolls up the ramp, then back down. Which is the correct acceleration graph?



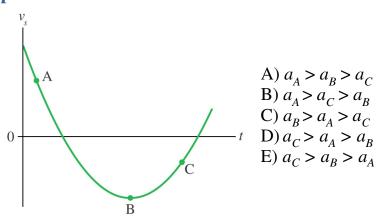
The ball rolls up the ramp, then back down. Which is the correct acceleration graph?



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Rank in order, from largest to smallest, the accelerations $a_A - a_C$ at points A – C.



Rank in order, from largest to smallest, the accelerations $a_A - a_C$ at points A – C.

