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Chapter 26 The Electric Field  

Chapter Goal: To learn how to calculate and use 
the electric field.
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Chapter 26 Reading Quiz
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What device provides a practical way to produce a 
uniform electric field? 

A. A long thin resistor.

B. A Faraday cage.

C. A parallel-plate capacitor.

D. A toroidal inductor.

E. An electric field uniformizer.

Reading Question 26.1
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For charged particles, what is the quantity q/m
called?

A. Linear charge density.

B. Charge-to-mass ratio.

C. Charged mass density.

D. Massive electric dipole.

E. Quadrupole moment.

Reading Question 26.2
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Which of these charge distributions did not have its 
electric field determined in Chapter 26?

A. A line of charge.

B. A parallel-plate capacitor.

C. A ring of charge.

D. A plane of charge.

E. They were all determined.

Reading Question 26.3
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The worked examples of charged-particle motion 
are relevant to

A. A transistor.

B. A cathode ray tube.

C. Magnetic resonance imaging.

D. Cosmic rays.

E. Lasers.

Reading Question 26.4
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2. (a) Determine the magnitude and the direction of the electric 
field at point A.

(b) What is the force on a +1nC charge when it is placed at A?

Slide 20-66

1. What are the magnitude and direction of the force 
experienced by a proton of charge e in an electric field E
as in the following diagram?
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Chapter 26 Content, Examples, and 

QuickCheck Questions

Slide 26-17

© 2013 Pearson Education, Inc.

Electric Field Models

� Most of this chapter will be concerned with the sources 

of the electric field.

� We can understand the essential physics on the basis of 

simplified models of the sources of electric field.

� The drawings show 
models of a positive 
point charge and an 
infinitely long negative 

wire.

� We also will consider 
an infinitely wide 
charged plane and a 
charged sphere.
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Electric Field of a Point Charge
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The Electric Field

� The electric field 
was defined as:              

where   on q is the 
electric force on 
test charge q.

� The SI units of 
electric field are 
therefore 

Newtons per 
Coulomb (N/C).
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= on q / q
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The Electric Field of Multiple Point Charges

� Suppose the source of an electric field is a group of 
point charges q1, q2, …

� The net electric field Enet at each point in space is a 

superposition of the electric fields due to each 
individual charge:
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What is the direction 

of the electric field at 

the dot?

QuickCheck 26.1 

E.  None of these.
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E.  None of these.
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Problem-Solving Strategy: The Electric Field of 

Multiple Point Charges
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Problem-Solving Strategy: The Electric Field of 

Multiple Point Charges
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What is the direction of the electric field at the dot?

QuickCheck 26.2 
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When r >> d, the electric field 

strength at the dot is

QuickCheck 26.3 

A.

B.

C.

D.

E.
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Electric Dipoles

� Two equal but 
opposite charges 
separated by a 
small distance form 

an electric dipole.

� The figure shows 
two examples.
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The Dipole Moment

� It is useful to define the 
dipole moment p, 
shown in the figure, as 
the vector:

� The SI units of the dipole moment are C m.
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The Dipole Electric Field at Two Points
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The Electric Field of a Dipole

This image cannot currently be displayed.
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� The electric field at a point on the axis of a dipole is:

The Electric Field of a Dipole

where r is the distance measured from the center of 
the dipole.

� The electric field in the plane that bisects and is 
perpendicular to the dipole is

� This field is opposite to the dipole direction, and it is 
only half the strength of the on-axis field at the same 
distance.
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Tactics: Drawing and Using Electric Field Lines
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This figure represents 
the electric field of a 

dipole as a field-
vector diagram. 

The Electric Field of a Dipole
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This figure represents the electric field of a dipole 
using electric field lines.

The Electric Field of a Dipole
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This figure represents 
the electric field of 

two same-sign 
charges using electric 
field lines.

The Electric Field of Two Equal Positive Charges
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Two protons, A and B, are in 
an electric field. Which 

proton has the larger 
acceleration? 

QuickCheck 26.4 

A. Proton A.

B. Proton B.

C. Both have the same 
acceleration.
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Stronger field where 

field lines are closer 

together.

Weaker field where 

field lines are farther 

apart.
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QuickCheck 26.5 

An electron is in the plane 
that bisects a dipole. What 

is the direction of the electric 
force on the electron?

E.  The force is zero.
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QuickCheck 26.5 

An electron is in the plane 
that bisects a dipole. What 

is the direction of the electric 
force on the electron?

E.  The force is zero.
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Continuous Charge Distributions

Linear charge density, 
which has units of 
C/m, is the amount of 
charge per meter of 
length.

The linear charge 
density of an object of 
length L and charge Q
is defined as

Slide 26-43

© 2013 Pearson Education, Inc.

If 8 nC of charge are 
placed on the square loop 
of wire, the linear charge 
density will be  

QuickCheck 26.6 

A. 800 nC/m.

B. 400 nC/m.

C. 200 nC/m.

D. 8 nC/m.

E. 2 nC/m.
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Continuous Charge Distributions

The surface charge 
density of a two-
dimensional distribution 
of charge across a 
surface of area A is 

defined as:

Surface charge 
density, with units 
C/m2, is the amount of 
charge per square 

meter. 
Slide 26-46
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A flat circular ring is made from a 
very thin sheet of metal. Charge 
Q is uniformly distributed over the 
ring. Assuming w << R, the 
surface charge density η is

QuickCheck 26.7 

A. Q/2πRw.

B. Q/4πRw.

C. Q/πR2.

D. Q/2πR2.

E. Q/πRw.
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The ring has two 

sides, each of area 

2πRw. 
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Problem-Solving Strategy: The Electric Field of 

a Continuous Distribution of Charge
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Problem-Solving Strategy: The Electric Field of 

a Continuous Distribution of Charge
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The Electric Field of a Finite Line of 

Charge Example 26.3 in the text 
uses integration to find 
the electric field strength 
at a radial distance r in 

the plane that bisects a 
rod of length L with total 

charge Q: 

Slide 26-51

The Electric Field of a Finite Line of Charge
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At the dot, the y-component of the electric field due to the 
shaded region of charge is

QuickCheck 26.8 

A.

B.

C.

D.

E.
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At the dot, the y-component of the electric field due to the 
shaded region of charge is

QuickCheck 26.8 

A.

B.

C.

D.

E.
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An Infinite Line of Charge

The electric field of a thin, 
uniformly charged rod 
may be written: 

If we now let L → ∞, the 
last term becomes simply 
1 and we’re left with:
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A Ring of Charge

� Consider the on-axis 
electric field of a positively 
charged ring of radius R.

� Define the z-axis to be the 
axis of the ring.

� The electric field on the 
z-axis points away from 
the center of the ring, 
increasing in strength until 
reaching a maximum 
when |z| ≈ R, then 
decreasing:
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A Disk of Charge

� Consider the on-axis 
electric field of a positively 
charged disk of radius R.

� Define the z-axis to be the 
axis of the disk.

� The electric field on the 
z-axis points away from 
the center of the disk, with 
magnitude:
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A Plane of Charge

� The electric field of a plane of charge is found from the 
on-axis field of a charged disk by letting the radius R → ∞.

� The electric field of an infinite plane of charge with surface 
charge density η is:

� For a positively charged plane, with η > 0, the electric 
field points away from the plane on both sides of the 
plane.

� For a negatively charged plane, with η < 0, the electric 
field points towards the plane on both sides of the plane.

Slide 26-59
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A Plane of Charge
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Two protons, A and B, are 
next to an infinite plane of 
positive charge. Proton B is 
twice as far from the plane 
as proton A. Which proton 
has the larger acceleration?

QuickCheck 26.9 

A. Proton A.

B. Proton B.

C. Both have the same acceleration.
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A sphere of charge Q and radius R, be it a uniformly 
charged sphere or just a spherical shell, has an 
electric field outside the sphere that is exactly the 
same as that of a point charge Q located at the center 

of the sphere:

A Sphere of Charge
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� The figure shows two 
electrodes, one with 
charge +Q and the other 
with −Q placed face-to-
face a distance d apart.

� This arrangement of two 
electrodes, charged 
equally but oppositely, is 
called a parallel-plate 

capacitor.

� Capacitors play important 
roles in many electric 
circuits.

The Parallel-Plate Capacitor

Slide 26-64
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� The figure shows two 
capacitor plates, seen 
from the side.

� Because opposite 
charges attract, all of 
the charge is on the 
inner surfaces of the 
two plates.

� Inside the capacitor, 
the net field points 
toward the negative 
plate.

� Outside the capacitor, 
the net field is zero.

The Parallel-Plate Capacitor

Slide 26-65
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The electric field inside a capacitor is

where A is the surface area of each electrode. 
Outside the capacitor plates, where E+ and E− have 
equal magnitudes but opposite directions, the electric 
field is zero.

The Parallel-Plate Capacitor
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Three points inside a 

parallel-plate capacitor are 

marked. Which is true?

QuickCheck 26.10 

A. E1 > E2 > E3

B. E1 < E2 < E3

C. E1 = E2 = E3

D. E1 = E3 > E2

Slide 26-67

© 2013 Pearson Education, Inc.

Three points inside a 

parallel-plate capacitor are 

marked. Which is true?

QuickCheck 26.10 
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� The figure shows the 
electric field of an 
ideal parallel-plate 
capacitor constructed 

from two infinite 
charged planes

� The ideal capacitor is 
a good approximation 
as long as the 
electrode separation d

is much smaller than 
the electrodes’ size.

The Ideal Capacitor
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� Outside a real capacitor 
and near its edges, the 
electric field is affected 
by a complicated but 

weak fringe field.

� We will keep things 
simple by always 
assuming the plates are 
very close together and 
using E = η/  0 for the 

magnitude of the field 
inside a parallel-plate 
capacitor.

A Real Capacitor
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� The figure shows an 
electric field that is the 
same—in strength and 
direction—at every 

point in a region of 
space.

� This is called a 
uniform electric field.

� The easiest way to 

produce a uniform 
electric field is with a 
parallel-plate 
capacitor.

Uniform Electric Fields
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Example 26.7 Charge Density on a Cell Wall
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Example 26.7 Charge Density on a Cell Wall
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Example 26.7 Charge Density on a Cell Wall
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Example 26.7 Charge Density on a Cell Wall
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� Consider a particle of charge q and mass m at a 
point where an electric field E has been produced 
by other charges, the source charges.

� The electric field exerts a force Fon q = qE.

Motion of a Charged Particle in an Electric Field

Slide 26-79
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� The electric field exerts a force Fon q = qE on a charged 
particle.

� If this is the only force acting on q, it causes the 
charged particle to accelerate with

Motion of a Charged Particle in an Electric Field

� In a uniform field, the acceleration is constant:

Slide 26-80
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� “DNA fingerprints” are 
measured with the 
technique of gel 

electrophoresis.

� A solution of negatively 
charged DNA fragments 
migrate through the gel 
when placed in a uniform 
electric field.

� Because the gel exerts a 
drag force, the fragments 
move at a terminal speed 
inversely proportional to 
their size.

Motion of a Charged Particle in an Electric Field
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A proton is moving to the right in a 
vertical electric field. A very short 
time later, the proton’s velocity is 

QuickCheck 26.11 
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Which electric field is responsible for the proton’s 

trajectory? 

QuickCheck 26.12 

A. B. C. D. E.
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Dipoles in a Uniform Electric Field

� The figure shows an 
electric dipole placed in 
a uniform external 
electric field.

� The net force on the 
dipole is zero.

� The electric field exerts a 
torque on the dipole 
which causes it to rotate.
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� The figure shows an 
electric dipole placed in 
a uniform external 
electric field.

� The torque causes the 
dipole to rotate until it is 
aligned with the electric 
field, as shown.

� Notice that the positive 

end of the dipole is in 
the direction in which E

points.

Dipoles in a Uniform Electric Field
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Which dipole experiences no net 
force in the electric field? 

QuickCheck 26.13 

A.

B.

C.

A. Dipole A.

B. Dipole B.

C. Dipole C.

D. Both dipoles A and C.

E. All three dipoles.
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Which dipole experiences no net 
force in the electric field? 

QuickCheck 26.13 
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Which dipole experiences no net 
torque in the electric field? 

QuickCheck 26.14 

A. Dipole A.

B. Dipole B.

C. Dipole C.

D. Both dipoles A and C.

E. All three dipoles.
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Which dipole experiences no net 
torque in the electric field? 

QuickCheck 26.14 
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Dipoles in a Uniform Electric Field

� The figure shows a 
sample of permanent 
dipoles, such as water 
molecules, in an 
external electric field.

� All the dipoles rotate 
until they are aligned 
with the electric field.

� This is the mechanism 
by which the sample 
becomes polarized.
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The Torque on a Dipole

The torque on a dipole placed in a uniform external 
electric field is
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Example 26.10 The Angular Acceleration of 

a Dipole Dumbbell
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Example 26.10 The Angular Acceleration of a 

Dipole Dumbbell
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Example 26.10 The Angular Acceleration of a 

Dipole Dumbbell
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Example 26.10 The Angular Acceleration of a 

Dipole Dumbbell
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Example 26.10 The Angular Acceleration of a 

Dipole Dumbbell
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Dipoles in a Nonuniform Electric Field

� Suppose that a dipole is 
placed in a nonuniform 
electric field, such as the 
field of a positive point 
charge.

� The first response of the 
dipole is to rotate until it 
is aligned with the field.

� Once the dipole is aligned, the leftward attractive force 
on its negative end is slightly stronger than the rightward 
repulsive force on its positive end.

� This causes a net force to the left, toward the point 
charge.
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Dipoles in a Nonuniform Electric Field

� A dipole near a negative 
point charge is also 
attracted toward the point 
charge.

� The net force on a dipole 
is toward the direction of 
the strongest field.

� Because field strength increases as you get closer to 
any finite-sized charged object, we can conclude that 
a dipole will experience a net force toward any 
charged object.
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Example 26.11 The Force on a Water Molecule
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Example 26.11 The Force on a Water Molecule
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Example 26.11 The Force on a Water Molecule

Slide 26-103

© 2013 Pearson Education, Inc.

Example 26.11 The Force on a Water Molecule

Slide 26-104



3/22/2016

34

© 2013 Pearson Education, Inc.

Chapter 26 Summary Slides
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General Principles
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General Principles
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General Principles
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General Principles
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