

Chapter Goal: To learn how to calculate and use the electric field.

2

Reading Question 26.1

What device provides a practical way to produce a uniform electric field?

- A. A long thin resistor.
- B. A Faraday cage.
- C. A parallel-plate capacitor.
- D. A toroidal inductor.

2013 Pearson Education, Inc.

E. An electric field uniformizer.

Slide 26-9

Reading Question 26.1

What device provides a practical way to produce a uniform electric field?

- A. A long thin resistor.
- B. A Faraday cage.
- C. A parallel-plate capacitor.
- D. A toroidal inductor.
- E. An electric field uniformizer.

© 2013 Pearson Education, Inc.

Reading Question 26.2

For charged particles, what is the quantity q/m called?

- A. Linear charge density.
- B. Charge-to-mass ratio.
- C. Charged mass density.
- D. Massive electric dipole.
- E. Quadrupole moment.

2013 Pearson Education, Inc

Reading Question 26.2

For charged particles, what is the quantity q/m called?

- A. Linear charge density.
- B. Charge-to-mass ratio.
- C. Charged mass density.
- D. Massive electric dipole.
- E. Quadrupole moment.

2013 Pearson Education, Inc

Slide 26-12

Slide 26-11

Reading Question 26.3

Which of these charge distributions did *not* have its electric field determined in Chapter 26?

- A. A line of charge.
- B. A parallel-plate capacitor.
- C. A ring of charge.
- D. A plane of charge.
- E. They were *all* determined.

© 2013 Pearson Education, Inc.

Reading Question 26.3

Which of these charge distributions did *not* have its electric field determined in Chapter 26?

- A. A line of charge.
- B. A parallel-plate capacitor.
- C. A ring of charge.

013 Pearson Education, Inc.

- D. A plane of charge.
- E. They were *all* determined.

Reading Question 26.4

The worked examples of charged-particle motion are relevant to

- A. A transistor.
- B. A cathode ray tube.
- C. Magnetic resonance imaging.
- D. Cosmic rays.
- E. Lasers.

2013 Pearson Education, Inc

Slide 26-15

Slide 26-14

Reading Question 26.4

The worked examples of charged-particle motion are relevant to

- A. A transistor.
- B. A cathode ray tube.
- C. Magnetic resonance imaging.
- D. Cosmic rays.
- E. Lasers.

2013 Pearson Education, Inc.

Electric Field Models

- Most of this chapter will be concerned with the sources of the electric field.
- We can understand the essential physics on the basis of simplified *models* of the sources of electric field.
- The drawings show models of a positive point charge and an infinitely long negative wire.
- We also will consider an infinitely wide charged plane and a charged sphere.
 2019 Paraelacation Inc.

The Electric Field

was defined as: $\vec{E} = \vec{F}_{\text{on } q} / q$	Field location	Field strength (N/C)
where $\vec{F}_{on q}$ is the electric force on test charge q .	Inside a current- carrying wire	$10^{-3} - 10^{-1}$
	Near the earth's surface	$10^2 - 10^4$
The SI units of electric field are therefore Newtons per Coulomb (N/C).	Near objects charged by rubbing	$10^3 - 10^6$
	Electric breakdown in air, causing a spark	3×10^{6}
	Inside an atom	1011

The Electric Field of Multiple Point Charges

- Suppose the source of an electric field is a group of point charges q_1, q_2, \ldots
- The net electric field \vec{E}_{net} at each point in space is a superposition of the electric fields due to each individual charge:

2013 Pearson Education, Inc

$$(E_{\text{net}})_x = (E_1)_x + (E_2)_x + \dots = \sum (E_i)_x$$

$$(E_{\text{net}})_y = (E_1)_y + (E_2)_y + \dots = \sum (E_i)_y$$

$$(E_{\text{net}})_z = (E_1)_z + (E_2)_z + \dots = \sum (E_i)_z$$

Problem-Solving Strategy: The Electric Field of Multiple Point Charges PROBLEM-SOLVING STRATEGY 26.1 The electric field of multiple point charges MP **SOLVE** The mathematical representation is $\vec{E}_{net} = \sum \vec{E}_i$. • For each charge, determine its distance from P and the angle of \vec{E}_i from the axes.

- Calculate the field strength of each charge's electric field.
 Write each vector *E*_i in component form.
- Sum the vector \vec{E}_i in component form. Sum the vector components to determine \vec{E}_{net} . If needed, determine the magnitude and direction of \vec{E}_{net} .

13 Pearson Education, Inc.

ASSESS Check that your result has the correct units, is reasonable, and agrees with any known limiting cases.

The Electric Field of a Dipole

The electric field at a point on the axis of a dipole is:

$$\vec{E}_{\text{dipole}} \approx \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$$
 (on the axis of an electric dipole)

where r is the distance measured from the *center* of the dipole.

• The electric field in the plane that bisects and is perpendicular to the dipole is

$$\vec{E}_{\text{dipole}} \approx -\frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^3}$$
 (bisecting plane)

 This field is opposite to the dipole direction, and it is only half the strength of the on-axis field at the same distance.
 O 101 Person Education Inc.
 Silde 28-33

Tactics: Drawing and Using Electric Field Lines
 TACTICS prawing and using electric field lines Electric field lines are continuous curves drawn tangent to the electric field vectors. Conversely, the electric field vector stand that point. Closely spaced field lines represent a larger field strength, with longer field vectors. Widely spaced line lines that point indicate a smaller field strength. Electric field lines new cross. Electric field lines start from positive charges and end on negative charges.
0 2013 Perrove Education, Inc. Slide 26-35

QuickCheck 26.4

Two protons, A and B, are in an electric field. Which proton has the larger acceleration?

🖊 A. Proton A.

B. Proton B.

on Education, Inc

C. Both have the same acceleration.

16

Problem-Solving Strategy: The Electric Field of a Continuous Distribution of Charge

The electric field of a continuous distribution of charge

MODEL Model the distribution as a simple shape, such as a line of charge or a disk of charge. Assume the charge is uniformly distributed. IZE For the pictorial representation:

Draw a picture and establish a coordinate system.

on Education. Inc

2013 Pearson Education, Inc

- B Identify the point P a two statistic documents system.
 B Identify the point P a two statistic quark and the calculate the electric field.
 Divide the total charge Q into small pieces of charge ΔQ, using shapes for which you *already know* how to determine E. This is often, but not always, a
- which you *arready phow* how to determine *E*. This is often, out not always, a division into point charges. **O** Draw the electric field vector at P for one or two small pieces of charge. This will help you identify distances and angles that need to be calculated. **O** Look for symmetries of the charge distribution that simplify the field. You may conclude that some components of \vec{E} are zero.

Slide 26-49

(MP)

Problem-Solving Strategy: The Electric Field of a Continuous Distribution of Charge

PROBLEM-SOLVING STRATEGY 26:2 The electric field of a continuous distribution of charge

- **SOLVE** The mathematical representation is $\vec{E}_{net} = \sum \vec{E}_i$. Use superposition to form an algebraic expression for each of the three com-

- Use superposition to form an algebraic expression for *each* of the three components of *E*ⁱ (unless you are sure one or more is zero) at point P.
 Let the (x, y, z) coordinates of the point remain variables.
 Replace the small charge *AQ* with an equivalent expression involving a charge density and a coordinate, such as *dx*, that describes the shape of charge *AQ*. This is the critical step in making the transition from a sum to an integral because you need a coordinate to serve as the integration variable.
 Express all angles and distances in terms of the coordinates.
 Let the sum become an integral. The integration will be over the *one* coordinate variable that is related to *AQ*. The integration will be over the *instearable* must "cover" the entire charged object.

ASSESS Check that your result is consistent with any limits for which you know what the field should be.

A Plane of Charge

2013 Pearson Education, Inc

- The electric field of a plane of charge is found from the on-axis field of a charged disk by letting the radius $R \rightarrow \infty$.
- The electric field of an infinite plane of charge with surface charge density η is:

$$E_{\text{plane}} = \frac{\eta}{2\epsilon_0} = \text{constant}$$

- For a positively charged plane, with $\eta > 0$, the electric field points away from the plane on both sides of the plane.
- For a negatively charged plane, with $\eta < 0$, the electric field points towards the plane on both sides of the plane.

A Sphere of Charge

A sphere of charge Q and radius R, be it a uniformly charged sphere or just a spherical shell, has an electric field *outside* the sphere that is exactly the same as that of a point charge Q located at the center of the sphere:

 $ec{E}_{
m sphere} = rac{Q}{4\pi\epsilon_0 r^2} \hat{r}$ for $r \ge R$

The Parallel-Plate Capacitor

- The figure shows two electrodes, one with charge +Q and the other with -Q placed face-toface a distance d apart.
- This arrangement of two electrodes, charged equally but oppositely, is called a parallel-plate capacitor.
- Capacitors play important roles in many electric circuits.

3 Pearson Education, Inc

Slide 26-64

- charges attract, all of the charge is on the *inner* surfaces of the two plates.
- Inside the capacitor, the net field points toward the negative plate.
- Outside the capacitor, the net field is zero.

2013 Pearson Education, Inc.

The electric field inside a capacitor is $\vec{E}_{capacitor} = \vec{E}_{+} + \vec{E}_{-} = \left(\frac{\eta}{\epsilon_{0}}, \text{ from positive to negative}\right)$ $= \left(\frac{Q}{\epsilon_{0}A}, \text{ from positive to negative}\right)$ where A is the surface area of each electrode. Outside the capacitor plates, where E_{+} and E_{-} have equal magnitudes but *opposite* directions, the electric field is zero.

A Real Capacitor

- Outside a real capacitor and near its edges, the electric field is affected by a complicated but weak fringe field.
- We will keep things simple by always assuming the plates are very close together and using $E = \eta/\epsilon_0$ for the magnitude of the field inside a parallel-plate capacitor.

Example 26.7 Charge Density on a Cell Wall

EXAMPLE 26.7 Charge density on a cell wall

Example 25.7 noted that the electric field strength in the cell wall of a neuron is typically $1.0 \times 10^7\,$ N/C. This electric field is established because the outer surface of the cell wall is positive and the inner surface negative. What is a typical surface charge density on the surface of a cell wall?

MODEL Although cells are roughly spherical, the wall thickness is much less than the radius of the cell. Locally, at a point inside the cell wall, the curvature is negligible, so we can model the cell wall as a parallel-plate capacitor.

Motion of a Charged Particle in an Electric Field

- The electric field exerts a force $\vec{F}_{\text{on }q} = q\vec{E}$ on a charged particle.
- If this is the only force acting on q, it causes the charged particle to accelerate with

$$\vec{a} = \frac{\vec{F}_{\text{on }q}}{m} = \frac{q}{m}\vec{E}$$

In a uniform field, the acceleration is constant:

$$a = \frac{qE}{m} = \text{constant}$$

© 2013 Pearson Education, Inc.

Motion of a Charged Particle in an Electric Field

• "DNA fingerprints" are measured with the technique of *gel electrophoresis*.

- A solution of negatively charged DNA fragments migrate through the gel when placed in a uniform electric field.
- Because the gel exerts a drag force, the fragments move at a terminal speed inversely proportional to their size.

Dipoles in a Uniform Electric Field

- The figure shows an electric dipole placed in a uniform external electric field.
- The torque causes the dipole to rotate until it is aligned with the electric field, as shown.

 Notice that the positive end of the dipole is in _ the direction in which \vec{E} points.

013 Pearson Education, Inc

EXAMPLE 26.10 The Angular Acceleration of a Dipole Dumbbell EXAMPLE 26.10 The angular acceleration of a dipole dumbbell Two 1.0 g balls are connected by a 2.0-cm-long insulating rod of negligible mass. One ball has a charge of +10 nC, the other a charge of -10 nC. The rod is held in a 1.0×10^4 N/C uniform electric field at an angle of 30° with respect to the field, then released. What is its initial angular acceleration? MODEL The two oppositely charged balls form an electric dipole. The electric field exerts a torque on the dipole, causing an angular acceleration.

Dipoles in a Nonuniform Electric Field

 Suppose that a dipole is placed in a nonuniform electric field, such as the field of a positive point charge.

Slide 26-99

- The first response of the dipole is to rotate until it is aligned with the field.
- Once the dipole is aligned, the leftward attractive force on its negative end is slightly stronger than the rightward repulsive force on its positive end.
- This causes a net force to the *left*, toward the point charge.

2013 Pearson Education. In

General Principles

Sources of \vec{E}

Continuous distribution of charge

- Divide the charge into segments ΔQ for which you already know the field.
- Find the field of each ΔQ .
- Find \vec{E} by summing the fields of all ΔQ .

The summation usually becomes an integral. A critical step is replacing ΔQ with an expression involving a **charge density** (λ or η) and an integration coordinate.

