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Chapter 21. Superposition 

The combination of two or 

more waves is called a 

superposition of waves. 

Applications of 

superposition range from 

musical instruments to the 

colors of an oil film to 

lasers.

Chapter Goal: To 

understand and use the idea 

of superposition.
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Chapter 21. Superposition
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Topics:

• The Principle of Superposition  

• Standing Waves  

• Transverse Standing Waves  

• Standing Sound Waves and Musical 

Acoustics  

• Interference in One Dimension  

• The Mathematics of Interference  

• Interference in Two and Three Dimensions  

• Beats  

Chapter 21. Superposition 
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Chapter 21. Reading Quizzes
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When a wave pulse on a string reflects 

from a hard boundary, how is the 

reflected pulse related to the incident 

pulse?

A. Shape unchanged, amplitude unchanged

B. Shape inverted, amplitude unchanged

C. Shape unchanged, amplitude reduced

D. Shape inverted, amplitude reduced

E. Amplitude unchanged, speed reduced
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A. Shape unchanged, amplitude unchanged

B. Shape inverted, amplitude unchanged

C. Shape unchanged, amplitude reduced

D. Shape inverted, amplitude reduced
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When a wave pulse on a string reflects 

from a hard boundary, how is the 

reflected pulse related to the incident 

pulse?

8

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

There are some points on a standing 

wave that never move. What are 

these points called? 

A. Harmonics

B. Normal Modes

C. Nodes

D. Anti-nodes

E. Interference
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A. Harmonics
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C. Nodes

D. Anti-nodes

E. Interference
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wave that never move. What are 

these points called? 
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Two sound waves of nearly equal 

frequencies are played simultaneously. 

What is the name of the acoustic 

phenomena you hear if you listen to 

these two waves?

A. Beats

B. Diffraction

C. Harmonics

D. Chords

E. Interference
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The various possible standing 

waves on a string are called the

A. antinodes.

B. resonant nodes.

C. normal modes.

D. incident waves.
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The various possible standing 

waves on a string are called the

A. antinodes.

B. resonant nodes.

C. normal modes.

D. incident waves.
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The frequency of the third harmonic 

of a string is

A. one-third the frequency of the fundamental.

B. equal to the frequency of the fundamental.

C. three times the frequency of the fundamental.

D. nine times the frequency of the fundamental.
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Chapter 21. Basic Content and Examples
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The Principle of Superposition

If wave 1 displaces a particle in the medium by D1 and 

wave 2 simultaneously displaces it by D2, the net 

displacement of the particle is simply D1 + D2.
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Standing Waves
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The Mathematics of Standing Waves

A sinusoidal wave traveling to the right along the x-axis 

with angular frequency ω = 2πf, wave number k = 2π/λ and 

amplitude a is

An equivalent wave traveling to the left is 

We previously used the symbol A for the wave amplitude, 

but here we will use a lowercase a to represent the  

amplitude of each individual wave and reserve A for the

amplitude of the net wave.
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The Mathematics of Standing Waves

According to the principle of superposition, the net 

displacement of the medium when both waves are present is 

the sum of DR and DL:

We can simplify this by using a trigonometric identity, and 

arrive at 

Where the amplitude function A(x) is defined as

The amplitude reaches a maximum value of Amax = 2a at 

points where sin kx = 1.
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Examples: Waves on Strings
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Examples: Waves on Pipes
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EXAMPLE 21.1 Node spacing on a string

QUESTIONS:
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EXAMPLE 21.1 Node spacing on a string
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EXAMPLE 21.1 Node spacing on a string
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EXAMPLE 21.1 Node spacing on a string
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Standing Waves on a String
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For a string of fixed length L, the boundary conditions can 

be satisfied only if the wavelength has one of the values

A standing wave can exist on the string only if its 

wavelength is one of the values given by Equation 21.13.

Because λf = v for a sinusoidal wave, the oscillation 

frequency corresponding to wavelength λm is

Standing Waves on a String
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There are three things to note about the normal modes of a

string.

1. m is the number of antinodes on the standing wave, not 

the number of nodes. You can tell a string’s mode of 

oscillation by counting the number of antinodes.

2. The fundamental mode, with m = 1, has λ1 = 2L, not

λ1 = L. Only half of a wavelength is contained between 

the boundaries, a direct consequence of the fact that the 

spacing between nodes is λ/2.

3. The frequencies of the normal modes form a series: f1, 

2f1, 3f1, …The fundamental frequency f1 can be found as 

the difference between the frequencies of any two 

adjacent modes. That is, f1 = ∆f = fm+1 – fm.

Standing Waves on a String

32

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 21.4 Cold spots in a microwave 

oven

QUESTION:
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EXAMPLE 21.4 Cold spots in a microwave 

oven
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EXAMPLE 21.4 Cold spots in a microwave 

oven
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Standing Sound Waves

• A long, narrow column of air, such as the air in a tube or 

pipe, can support a longitudinal standing sound wave. 

• A closed end of a column of air must be a displacement 

node. Thus the boundary conditions—nodes at the ends—

are the same as for a standing wave on a string.  

• It is often useful to think of sound as a pressure wave 

rather than a displacement wave. The pressure oscillates 

around its equilibrium value. 

• The nodes and antinodes of the pressure wave are 

interchanged with those of the displacement wave.
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EXAMPLE 21.6 The length of an organ pipe

QUESTION:
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EXAMPLE 21.6 The length of an organ pipe
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EXAMPLE 21.6 The length of an organ pipe
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EXAMPLE 21.6 The length of an organ pipe
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EXAMPLE 21.7 The notes on a clarinet

QUESTION:
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EXAMPLE 21.7 The notes on a clarinet
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EXAMPLE 21.7 The notes on a clarinet
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Interference in One Dimension

The pattern resulting from the superposition of two waves is 

often called interference.  In this section we will look at the 

interference of two waves traveling in the same direction.
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The Mathematics of Interference

As two waves of equal amplitude and frequency travel 

together along the x-axis, the net displacement of the 

medium is

We can use a trigonometric identity to write the net 

displacement as

Where ∆ø = ø2 – ø1 is the phase difference between the two

waves.
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The Mathematics of Interference

The amplitude has a maximum value A = 2a if cos(∆ø/2) = 

±1.  This occurs when

Where m is an integer.  Similarly, the amplitude is zero if 
cos(∆ø/2) = 0, which occurs when
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EXAMPLE 21.10 Designing an antireflection 

coating

QUESTION:
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EXAMPLE 21.10 Designing an antireflection 

coating
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EXAMPLE 21.10 Designing an antireflection 

coating
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EXAMPLE 21.10 Designing an antireflection 

coating
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EXAMPLE 21.10 Designing an antireflection 

coating
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Interference in Two and Three Dimensions
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The mathematical description of interference in two or 

three dimensions is very similar to that of one-dimensional 

interference.  The conditions for constructive and 

destructive interference are

where ∆r is the path-length difference.

Interference in Two and Three Dimensions
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Problem-Solving Strategy: Interference of two 

waves
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Problem-Solving Strategy: Interference of two 

waves
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Problem-Solving Strategy: Interference of two 

waves
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Problem-Solving Strategy: Interference of two 

waves
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers

QUESTIONS:
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers
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EXAMPLE 21.11 Two-dimensional 

interference between two loudspeakers

67

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Beats
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Beats

• With beats, the sound intensity rises and falls twice during 

one cycle of the modulation envelope. 

• Each “loud-soft-loud” is one beat, so the beat frequency

fbeat, which is the number of beats per second, is twice the 

modulation frequency fmod.

• The beat frequency is

where, to keep fbeat from being negative, we will always 

let f1 be the larger of the two frequencies. The beat  is 

simply the difference between the two individual 

frequencies.
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EXAMPLE 21.13 Listening to beats

QUESTIONS:
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EXAMPLE 21.13 Listening to beats
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EXAMPLE 21.13 Listening to beats
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Chapter 21. Summary Slides
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General Principles
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Important Concepts
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Important Concepts
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Applications
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Applications
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• Beat occurs due to the superposition of two waves of different f and 

same A

y1
= Asin(2πf1

t) 

y2
= Asin(2πf2

t) 

Loud        Soft Loud             Soft
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Chapter 21. Clicker Questions
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Two pulses on a string approach each other 

at speeds of 1 m/s. What is the shape of the 

string at t = 6 s?
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Two pulses on a string approach each other 

at speeds of 1 m/s. What is the shape of the 

string at t = 6 s?
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A standing wave on a string vibrates as shown at the 

top. Suppose the tension is quadrupled while the 

frequency and the length of the string are held 

constant. Which standing wave pattern is produced?
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A standing wave on a string vibrates as shown at the 

top. Suppose the tension is quadrupled while the 

frequency and the length of the string are held 

constant. Which standing wave pattern is produced?
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An open-open tube of air supports 

standing waves at frequencies of 300 Hz 

and 400 Hz, and at no frequencies 

between these two. The second harmonic 

of this tube has frequency

A. 800 Hz.

B. 200 Hz.

C. 600 Hz.

D. 400 Hz.

E. 100 Hz.
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Two loudspeakers 

emit waves with λλλλ = 

2.0 m. Speaker 2 is 1.0 

m in front of speaker 

1. What, if anything, 

must be done to cause 

constructive 

interference between 

the two waves?

A. Move speaker 1 forward (to the right) 0.5 m.

B. Move speaker 1 backward (to the left) 1.0 m.

C. Move speaker 1 forward (to the right) 1.0 m.

D. Move speaker 1 backward (to the left) 0.5 m.

E. Nothing. The situation shown already causes 

constructive interference.
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The interference at 

point C in the 

figure at the right is

A. maximum constructive.

B. destructive, but not 

perfect.

C. constructive, but less than 

maximum.

D. perfect destructive.

E. there is no interference at 

point C.
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A. maximum constructive.

B. destructive, but not 

perfect.

C. constructive, but less than 

maximum.

D. perfect destructive.

E. there is no interference at 

point C.

The interference at 

point C in the 

figure at the right is
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These two loudspeakers are in 

phase. They emit equal-amplitude 

sound waves with a wavelength of 

1.0 m. At the point indicated, is 

the interference maximum 

constructive, perfect destructive 

or  something in between?

A. perfect destructive

B. maximum constructive 

C. something in between
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These two loudspeakers are in 

phase. They emit equal-amplitude 

sound waves with a wavelength of 

1.0 m. At the point indicated, is 

the interference maximum 

constructive, perfect destructive 

or  something in between?

A. perfect destructive

B. maximum constructive 

C. something in between
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You hear three beats per second when two 

sound tones are generated. The frequency 

of one tone is known to be 610 Hz. The 

frequency of the other is

A. 604 Hz. 

B. 607 Hz.

C. 613 Hz. 

D. 616 Hz.

E. Either b  or c.
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