Chapter 21. Superposition

The combination of two or
more waves is called a
superposition of waves.
Applications of
superposition range from
musical instruments to the
colors of an oil film to
lasers.

Chapter Goal: To
understand and use the idea
of superposition.

Chapter 21. Superposition

Superposition and interference: What happens Sound reduction ...
when we “add” waves together? ... it depends!
Look ...

Two identical waves Two identical waves

“In-phase” “Out-of-phase”
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:

Twice the amplitude Zero amplitude The intensity of an undesirable sound (noise)

Same frequency and can be reduced by adding an ‘opposite’ sound

wavelength. to the original. The second wave has a ‘crest’
CONSTRUCTIVE DESTRUCTIVE where the original has a ‘trough’ and a trough
INTERFERENCE INTERFERENCE where the original has a crest.
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Chapter 21. Reading Quizzes
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When a wave pulse on a string reflects
from a hard boundary, how is the
reflected pulse related to the incident
pulse?

A. Shape unchanged, amplitude unchanged
B. Shape inverted, amplitude unchanged
C. Shape unchanged, amplitude reduced
D. Shape inverted, amplitude reduced

E. Amplitude unchanged, speed reduced
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There are some points on a standing
wave that never move. What are
these points called?

A. Harmonics

B. Normal Modes
C. Nodes

D. Anti-nodes

E. Interference
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Two sound waves of nearly equal
frequencies are played simultaneously.
What is the name of the acoustic
phenomena you hear if you listen to
these two waves?

A. Beats

B. Diffraction

C. Harmonics

D. Chords

E. Interference

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Two sound waves of nearly equal
frequencies are played simultaneously.
What is the name of the acoustic
phenomena you hear if you listen to
these two waves?

A. Beats
B. Diffraction
C. Harmonics
D. Chords
E. Interference

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The various possible standing
waves on a string are called the

A. antinodes.

B. resonant nodes.
C. normal modes.
D. incident waves.
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The various possible standing
waves on a string are called the

A. antinodes.

B. resonant nodes.
¢ C. normal modes.

D. incident waves.
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The frequency of the third harmonic
of a string is

A. one-third the frequency of the fundamental.
B. equal to the frequency of the fundamental.

C. three times the frequency of the fundamental.
D. nine times the frequency of the fundamental.
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The frequency of the third harmonic
of a string is

A. one-third the frequency of the fundamental.
B. equal to the frequency of the fundamental.

¢/ C. three times the frequency of the fundamental.
D. nine times the frequency of the fundamental.
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Chapter 21. Basic Content and Examples
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Pitching machines ®) FIGURE 21.1 Unlike particles, two waves
. A Loudspeskers B can pass directly through each other.
A B — \é/
Sy 5 S S
R P The balls collide and bounce
@ apart. Two particles cannot | N e hia e ek
5 occupy the same point of through each other
\\m«.e at the same time.

/
s IS

Alan Bill llan, Eill

The Principle of Superposition

If wave 1 displaces a particle in the medium by D, and
wave 2 simultaneously displaces it by D,, the net
displacement of the particle is simply D, + D,.

Principle of superposition When two or more waves are simultaneously present
at a single point in space, the displacement of the medium at that point is the sum
of the displacements due to each individual wave.
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FIGURE 21.5 Standing waves are often
Standing Waves represented as they would be seen in a
N L time-lapse photograph.
FIGURE 21.3 A vibrating string is an
example of a standing wave. D
Antinodes
0
Nodes
T T 1)l T X
I 2
0 5/\ A 5A 2A
The nodes and antinodes are spaced A/2 apart.
19 20
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The Mathematics of Standing Waves

A sinusoidal wave traveling to the right along the x-axis
with angular frequency o = 2xf, wave number k = 2z/4 and
amplitude a is

Dy = asin(kx — wt)

An equivalent wave traveling to the left is

D, = asin(kx + wt)

We previously used the symbol A for the wave amplitude,
but here we will use a lowercase a to represent the
amplitude of each individual wave and reserve A for the
amplitude of the net wave.

21
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The Mathematics of Standing Waves

According to the principle of superposition, the net
displacement of the medium when both waves are present is
the sum of Dy and D; :

D(x,t) = Dy + D, = asin(kx — wt) + asin(kx + wt)

We can simplify this by using a trigonometric identity, and

arrive at

D(x,t) = a(sinkxcoswt — coskxsinwt) + a(sinkxcoswt + coskxsinwt)

Where the amplitude function A(x) is defined as

D(x,t) = A(x)coswt

The amplitude reaches a maximum value of A = 2a at
points where sin kx = 1.
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The harmonics of a stretched string ...

How does a string make sound? ... Why do a vielin and guitar sound different ...

The fundamental frequency (f,) depends on the

type and length of the string and the tension.

When a string is plucked or struck on a real

... after all, they're both stringed instruments?
R
w— instrument net only is the fundamantal
—

Antinode  p e Antinode f, frequency pm[lufe[llbut lots of harmonics (f,,
2f,3f,,4f,, ete.), which all get added together
2, to form the final sound ...
o
3f, w b (A A

When a string is plucked or struck, a transverse —— .
[violin: #0Hz (A)] [ guitar: 440Hz (Ay) |

standing wave is created in the string. The

string causes the air in its vicinity to vibrate, as Although both instruments are playing the

a inal wave, of the same frequency.

Second harmonic (f, = 3f )

same note, the waveforms are different because

Lo mll, ers . v e n wi . i
t %‘ Severalpcssiblepuaveliiomafarelshoumapuity there are different amounts of harmonics in the

different frequencies (harmonics). The intensity sounds. Tt is these differences that allow us to

i a ri i Y lall. N .
of sound directly from a string is very small. recognize one instrument from another.
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The harmonics of a pipe closed at one end.

A fy=3f, fy =5,

oy =4L =il o =ils
If you blow gently across an open tube you'll
get the fundamental frequency (f,). If you blow
sharply, you'll get the higher frequencies (3f,,

5f,, ete.) mixed in ... perhaps like a “squeak”!

Since vufh, £« l So, shortening the pipe

L

(smaller L) gives a higher frequency.

The harmonics of a pipe open at both ends.

fy=2f,
Ml

If you blow gently across an open tube you'll
get the fundamental frequency (f,). If you blow
sharply, you'll get the higher frequencies (2f,,

3f,, etc.) mixed in ... perhaps like a “squeak”

. 1 . .
Since vu foh,, f,e—. So, shortening the pipe

L

(smaller L) gives a higher frequency.
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Wiy do an ohoe and clarinet sound different ...
.. after all, they're both wind instruments?

When a wave is set up in a tube in a real
instrument not only is the fundamantal
frequency produced but lots of harmonics,
which all get added together to form the final
sound ...

[ oboe: 523Hz (C3) | [ clarinet: 523Hz (C5) |

As with the stringed instruments, the oboe and
clarinet are playing the same note, but the
waveforms are different hecause there are

different amounts of harmenics in the sounds.
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EXAMPLE 21.1 Node spacing on a string

QUESTIONS:

EXAMPLE 21.1 Node spacing on a string

A very long string has a linear density of 5.0 g/m and is stretched
with a tension of 8.0 N. 100 Hz waves with amplitudes of 2.0 mm
are generated at the ends of the string.

a. What is the node spacing along the resulting standing wave?
b. What is the maximum displacement of the string?

25
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EXAMPLE 21.1 Node spacing on a string

MODEL Two counter-propagating waves of equal frequency create
a standing wave.

26
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EXAMPLE 21.1 Node spacing on a string

VISUALIZE The standing wave will look like Figure 21.5.

27
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EXAMPLE 21.1 Node spacing on a string

SOLVE a. The speed of the waves on the string is

T, 80N
= |2 = 40w/
"N~ V0.0050 ke/m s

and thus the wavelength is

v 40 m/s

f 100 Hz

=040m = 40 cm

Thus the spacing between adjacent nodes is A/2 = 20 cm.
b. The maximum displacement, at the antinodes, is

A 22— 4.0 mm

28
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Standing Waves on a String

FIGURE 21.10 Reflections at the two
boundaries cause a standing wave on
the string.

Wiggle the string in the middle.

The reflected waves travel
through each other. This
creates a standing wave. 29
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Standing Waves on a String

For a string of fixed length L, the boundary conditions can
be satisfied only if the wavelength has one of the values

oL
A, == m=1234,...
m

A standing wave can exist on the string only if its
wavelength is one of the values given by Equation 21.13.
Because Af = v for a sinusoidal wave, the oscillation
frequency corresponding to wavelength 4 is

1% v 1%

f,=—= =m— m=12734,...
\, 2Lim 2L

m
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Standing Waves on a String

There are three things to note about the normal modes of a

string.

1. m is the number of antinodes on the standing wave, not
the number of nodes. You can tell a string’s mode of
oscillation by counting the number of antinodes.

2. The fundamental mode, with m = 1, has 4, = 2L, not
A, = L. Only half of a wavelength is contained between
the boundaries, a direct consequence of the fact that the
spacing between nodes is 4/2.

3. The frequencies of the normal modes form a series: f;,
2f, 3f;, ...The fundamental frequency f; can be found as
the difference between the frequencies of any two
adjacent modes. Thatis, f, = Af =f ., — f..
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EXAMPLE 21.4 Cold spots in a microwave
oven

QUESTION:

EXAMPLE 21.4 Cold spots in a microwave oven
Cold spots in a microwave oven are found to be 6.0 cm apart.
What is the frequency of the microwaves?

32
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EXAMPLE 21.4 Cold spots in a microwave
oven

MODEL A standing wave is created by microwaves reflecting from
the walls.

EXAMPLE 21.4 Cold spots in a microwave
oven

SoLVE The cold spots are nodes in the microwave standing wave.
Nodes are spaced A/2 apart, so the wavelength of the microwave
radiation must be A = 12 cm = 0.12 m. The speed of microwaves
is the speed of light, v = ¢, so the frequency is

¢ 3.00 X 10® m/s
A 0.12m

=25 X 10°Hz = 2.5 GHz

33 34
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FIGURE 21.15 The m = 2 longitudinal
standing wave can be represented as a
Standing Sound Waves displacement wave or as a pressure wave.
The closed end is a displacement
. L. node ;1m| a pressure antinode.
° A long7 narrow COlumn Of alr’ SuCh as the airin a tube or i Air molecules undergo longitudinal
. . . . £ oscillations. This is a displacement
pipe, can support a longitudinal standing sound wave. { antinode and a pressure node.
* A closed end of a column of air must be a displacement . . .
node. Thus the boundary conditions—nodes at the ends—
. . L
are the same as for a standing wave on a string. Ax
* [t is often useful to think of sound as a pressure wave 9 oI
rather than a displacement wave. The pressure oscillates NooA N A N
around its equ11ibrium Value The displacement and pressure nodes
. p and antinodes are interchanged.
* The nodes and antinodes of the pressure wave are M x
interchanged with those of the displacement wave. A h N 2 o i
The pressure is oscillating around
atmospheric pressure p....
35 36
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FIGURE 21.16 The first three standing sound wave modes in columns of air with different
boundary conditions.

(a) Closed-closed

FIGURE 21.16 The first three standing sound wave modes in columns of air with different
boundary conditions.

(b) Open-open

s L
Pressure
/ Pressure
/
Displucémcm m=1 \
Displacement m=1
m=2
m=2
m=3
m=3
2L
An = 1,2,3,4 A=
m=1,2,3,4,... m=
( Josed-closed tube) m m=1,2,34,...
Oopen-open or Closed-Cclose: c
Jn= mL = mf P P 4 v (open-open or closed-closed tube)
2L S = m—— = mfy
2L
37 38
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FIGURE 21.16 The first three standing sound wave modes in columns of air with different
boundary conditions.
L
friesinied EXAMPLE 21.6 The length of an organ pipe
QUESTION:
Displu{cmcnl g =1
exAaMmPLE 21.6 The length of an organ pipe
m=3 An organ pipe open at both ends sounds its second harmonic at a frequency of 523 Hz.
(Musically, this is the note one octave above middle C.) What is the length of the pipe
from the sounding hole to the end?
m=35
N
" om m=1,3,5"7,...
v (open-closed tube)
fu=mr =,
39 40
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EXAMPLE 21.6 The length of an organ pipe

MODEL An organ pipe, similar to a flute, has a sounding hole where compressed air is
blown across the edge of the pipe. This is one end of an open-open tube, with the other
end at the true “end” of the pipe. Assume a room-temperature (20°C) speed of sound.

41
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EXAMPLE 21.6 The length of an organ pipe

soLVE The second harmonic is the m = 2 mode, which for an open-open tube has
frequency

fr=2
ey
Thus the length of the organ pipe is
v 343 m/s
= ————=0.656m = 656
5 523Hz m om

42
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EXAMPLE 21.6 The length of an organ pipe

AsSESS This is a typical length for an organ pipe.

43
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EXAMPLE 21.7 The notes on a clarinet

QUESTION:

EXAMPLE 21.7 The notes on a clarinet
A clarinet is 66.0 cm long. The speed of sound in warm air is 350 m/s. What are the fre-
quencies of the lowest note on a clarinet and of the next highest harmonic?

44
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EXAMPLE 21.7 The notes on a clarinet

MODEL A clarinet is an open-closed tube because the player’s lips and the reed seal the

tube at the upper end.

45
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EXAMPLE 21.7 The notes on a clarinet

soLVE The lowest frequency is the fundamental frequency. For an open-closed tube, the
fundamental frequency is

v 350 m/s

=== ————— 1|33 H7
4L 4(0.660 m)

hi

An open-closed tube has only odd harmonics. The next highest harmonic is m = 3, with
frequency f; = 3f; = 399 Hz.

46
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Interference in One Dimension

The pattern resulting from the superposition of two waves is
often called interference. In this section we will look at the
interference of two waves traveling in the same direction.

FIGURE 21.17 Two overlapped waves travel along the x-axis.

(b) Two overlapped sound waves

Speaker 2 Speaker 1 Point of detection

47
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Mathematics of Interference

As two waves of equal amplitude and frequency travel
together along the x-axis, the net displacement of the
medium is

D = D, + D, = asin(kx; — wt + ¢,y) + asin(kx, — ot + ¢y)

asing,; + asing,

We can use a trigonometric identity to write the net
displacement as

Al .
D= {ZQCOST] sin(kx,, — ©f + (Po)ave)

Where Ag = ¢, — ¢, is the phase difference between the two

waves.
48
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The Mathematics of Interference

The amplitude has a maximum value A = 2a if cos(Ag/2) =
+1. This occurs when

Ap = m -2 (maximum amplitude A = 2a)

Where m is an integer. Similarly, the amplitude is zero if
cos(Ag/2) = 0, which occurs when

-2 (minimum amplitude A = 0)

Ad =

m+ —
2

49
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EXAMPLE 21.10 Designing an antireflection
coating

QUESTION:

EXAMPLE 21.10 Designing an antireflection coating
Magnesium fluoride (MgF,) is used as an antireflection coating
on lenses. The index of refraction of MgF, is 1.39. What is the
thinnest film of MgF, that works as an antireflection coating at
A = 510 nm, near the center of the visible spectrum?

50
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EXAMPLE 21.10 Designing an antireflection
coating

MODEL Reflection is minimized if the two reflected waves inter-
fere destructively.

51
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EXAMPLE 21.10 Designing an antireflection
coating

soLVE The film thicknesses that cause destructive interference at
wavelength A are

I\ A
d= — =
(m 2|20
The thinnest film has m = 1. Its thickness is
A 510 nm
an - a(139) "
The film thickness is significantly less than the wavelength of vis-

ible light!

52
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EXAMPLE 21.10 Designing an antireflection
coating

ASSEsS The reflected light is completely eliminated (perfect
destructive interference) only if the two reflected waves have
equal amplitudes. In practice, they don’t. Nonetheless, the reflec-
tion is reduced from =4% of the incident intensity for “bare
glass” to well under 1%. Furthermore, the intensity of reflected
light is much reduced across most of the visible spectrum
(400-700 nm), even though the phase difference deviates more
and more from 7 rad as the wavelength moves away from
510 nm.

53
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EXAMPLE 21.10 Designing an antireflection
coating

It is the increasing reflection at the ends of the visible
spectrum (A = 400 nm and A = 700 nm), where A¢ deviates sig-

nificantly from = rad, that gives a reddish-purple tinge to the
lenses on cameras and binoculars. Homework problems will let
you explore situations where only one of the two reflections has a
reflection phase shift of 7 rad.

54
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Interference in Two and Three Dimensions

Two in-phase sources emit

FIGURE 21.26 The over]apping ripp]e circular or spherical waves.

patterns of two sources. A few points of =

constructive and destructive interference = \

are noted. / , \
/ e \

© Points of constructive interference.
A crest is aligned with a crest, or a
trough with a trough.

@ Points of destructive interference.
A crest is aligned with a trough of
another wave.
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Interference in Two and Three Dimensions

The mathematical description of interference in two or
three dimensions is very similar to that of one-dimensional
interference. The conditions for constructive and
destructive interference are

Maximum constructive interference:
Ar
Ap = 2777 + Ady = m - 21
m=20,1,2,...

Perfect destructive interference:

T

A
M=%f+mﬁ

1
Ty

where Ar is the path-length difference.

56
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Problem-Solving Strategy: Interference of two
waves

Interference of two waves MP

wopeL Make simplifying assumptions, such as assuming waves are circular and
of equal amplitude.

57
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Problem-Solving Strategy: Interference of two
waves

visuatize Draw a picture showing the sources of the waves and the point where
the waves interfere. Give relevant dimensions. Identify the distances r; and r,
from the sources to the point. Note any phase difference A¢, between the two
sources.

58
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Problem-Solving Strategy: Interference of two
waves

sorve The interference depends on the path-length difference Ar = r, — r; and
the source phase difference Ad.

A
Constructive: A¢ = ZWTr + Apy = m - 27
i = W 1L 2, 500

Sy

1
ik e =
2

A
Destructive: Ag = 2777,‘ + Ap, =

For identical sources (A¢, = 0), the interference is maximum constructive if
Ar = mA, perfect destructive if Ar = (m + 5)A.

59
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Problem-Solving Strategy: Interference of two
waves

nssess Check that your result has the correct units, is reasonable, and answers
the question.

60
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EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

QUESTIONS:

EXAMPLE 21.11 Two-dimensional interference between
two loudspeakers

Two loudspeakers in a plane are 2.0 m apart and in phase with each
other. Both emit 700 Hz sound waves into a room where the speed of
sound is 341 m/s. A listener stands 5.0 m in front of the loudspeak-
ers and 2.0 m to one side of the center. Is the interference at this
point maximum constructive, perfect destructive, or in between?
How will the situation differ if the loudspeakers are out of phase?

61
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EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

MODEL The two speakers are sources of in-phase, circular waves.
The overlap of these waves causes interference.

62
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EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

VISUALIZE FIGURE 21.29 shows the loudspeakers and defines the
distances r; and r, to the point of observation. The figure includes
dimensions and notes that A¢, = 0 rad.

FIGURE 21.29 Pictorial representation of the
interference between two loudspeakers.

Som
700 Hz
20m
l.om
lL.om
A¢,= Orad
700 Hz
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EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

SOLVE It’s not r; and r, that matter, but the difference Ar between
them. From the geometry of the figure we can calculate that

r=V(Gom?+ (1.0m)?=510m

=V (G0m)?+ 3.0m)?=58m

Thus the path-length difference is Ar = r, — r;, = 0.73 m. The
wavelength of the sound waves is
v 341 m/s

A=2 =20 487
7 700 Hz o

64
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EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

In terms of wavelengths, the path-length difference is Ar/A =
1.50, or

8
Ar=—A\
"7
Because the sources are in phase (A¢, = 0), this is the condi-
tion for destructive interference. If the sources were out of phase
(A¢, = 7 rad), then the phase difference of the waves at the lis-
tener would be

A 3
Ad = 2777r+ Ay = 2m( | + mrad = 4 rad

This is an integer multiple of 27 rad, so in this case the interfer-
ence would be constructive.

65

EXAMPLE 21.11 Two-dimensional
interference between two loudspeakers

ASSESS Both the path-length difference and any inherent phase
difference of the sources must be considered when evaluating

interference.

66
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Beats Beats
EIFUBEI 81 edis i1 Euses by ihs * With beats, the sound intensity rises and falls twice during
superposition of two waves of nearly .
identical frequency. one cycle of the modulation envelope.
, ; * Each “loud-soft-loud” is one beat, so the beat frequency
The medium oscillates . X . .
b rapidly at frequency £,,,. Joearr Which is the number of beats per second, is twice the
-l "-,_': " modulation frequenfty Jrnod-
\N i IIE * The beat frequency is
‘ ﬂ n Ir n‘ n
Wmod 1 wq (05
0 n;vn nwA l:vn t fbeatzzfmod:2 =2iole == 0 :fl_f2
U u V/ U U \u 27 220 27w
\ I AY
—2a sl L where, to keep f..,, from being negative, we will always
Loud Boftflond. ol Lupd Bofi: Loud let f, be the larger of the two frequencies. The beat is
The amplitude is slowly . . S T
modulasis Sroosla. sl simply the difference between the two individual
o7 frequencies.
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EXAMPLE 21.13 Listening to beats

QUESTIONS:

EXAMPLE 21.13 Listening to beats
One flutist plays a note of 510 Hz while a second plays a note of
512 Hz. What frequency do you hear? What is the beat frequency?
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EXAMPLE 21.13 Listening to beats

SOLVE You hear a note with frequency f,,, = 511 Hz. The beat

frequency is

fbeat =fl _fZ = 2 Hx

You (and they) would hear two beats per second.
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EXAMPLE 21.13 Listening to beats

Assess If a 510 Hz note and a 512 Hz note were played sepa-
rately, you would not be able to perceive the slight difference in
frequency. But when the two notes are played together, the obvi-
ous beats tell you that the frequencies are slightly different. Musi-
cians learn to make constant minor adjustments in their tuning as
they play in order to eliminate beats between themselves and other
players.
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Chapter 21. Summary Slides
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General Principles

Principle of Superposition

The displacement of a medium when more than one wave is present is the sum of the
displacements due to each individual wave.

Important Concepts

Standing waves are due to the superposition of
two traveling waves moving in opposite directions.

Antinodes

i

VY

Nodes'

Node spacing is 3.
The amplitude at position x is
A(x) = 2asinkx
where a is the ampli- m=1
tude of each wave. O
The boundary
conditions determine )
which standing-wave
frequencies and
wavelengths are
allowed. The allowed
standing waves are OOO
modes of the system.

Standing waves on a string

73 74
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
. .
Important Concepts Applications
Interference _ v Boundary conditions
In general, the superposition of two or more waves i*?"[‘f""‘“ t 'C"‘“j-:‘;‘;” tcllve
e eiplle were el ineiimnes, s Strings, electromagnetic waves, and sound waves in closed-
Maximum constructive interference occurs 1 d tub h d t both ds:
where crests are aligned with crests and troughs closed tubes must have nodes at both ends:
with troughs. These waves are in phase. The '
maximum displacement is A = 2a. "{( ‘ o= 2L _ % _
Perfect destructive interference occurs where "A@@%ﬂ‘ m f i M L, - I’I’lf 1
crests are aligned wi A== avAY m
gned with troughs. These waves are S———
troughs. The NP

out of phase. The amplitude is A = 0. "‘%"”‘8’.’ - wherem = 1. 2.3
Interference depends on the phase difference A¢ ‘Q‘\* (A
DU RO D SRS A ‘ The frequencies and wavelengths are the same for a sound wave

Constructive: A = 27r7’ + A = m-2m in an open-open tube, which has antinodes at both ends.

Nodal lines, destr i =
L (m LA I A A sound wave in an open closed tube must ha\{e a node at the
2 z closed end but an antinode at the open end. This leads to

Ar is the path-length difference of the two waves, and Ad, is any phase
difference between the sources. For identical sources (in phase, A, = 0): 41, v

Interference is constructive if the path-length difference Ar = mA. Am = ; f m = mZ = mf 1

Interference is destructive if the path-length difference Ar = (m GF %))‘

Ad wherem = 1, 3,5,7, .. ..
The amplitude at a point where the phase difference is A¢ is A = |2acos = ‘
75 76
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Applications

Beats (loud-soft-loud-soft modulations of intensity) occur when
two waves of slightly different frequency are superimposed.

Soft Loud Soft Loud Soft

The beat frequency between waves of frequencies f; and f is

fheat = f] - f2

* Beat occurs due to the superposition of two waves of different f and
same A

Loud Soft Loud Soft

y : = Asin(ZTCf] t)

y=n+th= {ZACOSZ!I[Jrl ;fz Jf}:osh{%}

y2 = Asin(ZTszt)

77 78
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1 m/s 1 m/s
/\_> 4_/\

T T T T T T T T T T r—X (Hl)

0 2 4 6 g§ 10 12 14 16 18 20
Approaching waves att = 0 s

Two pulses on a string approach each other

. . at speeds of 1 m/s. What is the shape of the
Chapter 21. Clicker Questions P p
string att=6s?
6 8 ‘I:: 12 14 b 6 8 (l;yl 1214 6 8 (l; 2 14 6 8 {:: 1214
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o 2 4 6 & 10 12 14 16 18 20
Approaching waves atr = 0 s

Two pulses on a string approach each other
at speeds of 1 m/s. What is the shape of the
string att =6 s?

x{m)
6 8 10 12 14

(dy

m e (m] x(m)

x
6 8 10 12 14 6 8 10 12 14
(a) by

6 8 10 12 14

< P
~ -
o~
- ~

T T 1

|III|IIII~x
0 2 4 6 8 1012 14 16 18 20

(m)

Original standing wave

< < >

A standing wave on a string vibrates as shown at the
top. Suppose the tension is quadrupled while the
frequency and the length of the string are held
constant. Which standing wave pattern is produced?

No standing wave
for these conditions

&S

ore e - <O KOCOOO

(a) (b) (e} () {e)
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Original standing wave .
An open-open tube of air supports
== standing waves at frequencies of 300 Hz
and 400 Hz, and at no frequencies
A standing wave on a string vibrates as shown at the between these two. The second harmonic
top. Suppose the tension is quadrupled while the of this tube has frequency
frequency and the length of the string are held
constant. Which standing wave pattern is produced? A. 800 Hz.
| B. 200 Hz.
S oo OOO0OO0 S C. 600 Hz.
° * D. 400 Hz.
E. 100 Hz.
83 84
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An open-open tube of air supports
standing waves at frequencies of 300 Hz
and 400 Hz, and at no frequencies
between these two. The second harmonic
of this tube has frequency

Two loudspeakers

emit waves with A=

2.0 m. Speaker 2 is 1.0 |
m in front of speaker

1. What, if anything,

must be done to cause 2

.constructlve ‘m'
interference between 1.0 m

A. 800 Hz. the two waves?
‘/B. 200 Hz. A.Move speaker 1 forward (to the right) 0.5 m.
B. Move speaker 1 backward (to the left) 1.0 m.
C. 600 Hz. C. Move speaker 1 forward (to the right) 1.0 m.
D. 400 Hz. D. Move speaker 1 backward (to the left) 0.5 m.
E. Nothing. The situation shown already causes
E. 100 Hz. constructive interference.
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Two loudspeakers ® AtA, Ar, = A, 50 this is  point
emit waves with 1= The interference at - e
2.0 m. Speaker 2 is 1.0 { . .

m in front of speaker point Cin the
1. What, if anything, figure at the l‘ight is
must be done to cause 2
constructive PR A=20m A. maximum constructive.
interference between 1.0 m B. destructive, but not
the two waves? perfect.
A.Move speaker 1 forward (to the right) 0.5 m. C. cons'tructlve, but less than
B. Move speaker 1 backward (to the left) 1.0 m. mhaximum. .
C. Move speaker 1 forward (to the right) 1.0 m. D. perfe(?t des‘Fructlve.
¢/'D. Move speaker 1 backward (to the left) 0.5 m. E. there is no interference at 5 ﬁﬂ'&ielﬁu:rjig.l;&l pelnt
E. Nothing. The situation shown already causes point C.
constructive interference.
87 88
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® ALA, Ar, = A, so this is a point
of constructive interference.

The interference at
point C in the
figure at the right is

A. maximum constructive.

B. destructive, but not
perfect.

C. constructive, but less than
maximum.

/' D. perfect destructive.

E. there is no interference at * AtB, Ar, = 1, so this is a point

point C of destructive interference.
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These two loudspeakers are in
phase. They emit equal-amplitude
sound waves with a wavelength of
1.0 m. At the point indicated, is
the interference maximum
constructive, perfect destructive
or something in between?

A= 10m 9.5m

A=10m

A. perfect destructive
B. maximum constructive
C. something in between
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These two loudspeakers are in
phase. They emit equal-amplitude
sound waves with a wavelength of
1.0 m. At the point indicated, is
the interference maximum
constructive, perfect destructive
or something in between?

A= 10m 9.5m

A=10m

A. perfect destructive
¢/ B. maximum constructive
C. something in between
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You hear three beats per second when two
sound tones are generated. The frequency
of one tone is known to be 610 Hz. The
frequency of the other is

A. 604 Hz.
B. 607 Hz.
C. 613 Hz.
D. 616 Hz.
E. Either b orc.
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You hear three beats per second when two
sound tones are generated. The frequency
of one tone is known to be 610 Hz. The
frequency of the other is

A. 604 Hz.
B. 607 Hz.
C. 613 Hz.
D. 616 Hz.
¢ E. Either b orc.
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