

Chapter 23

Alternating Current Circuits

1

23.1 Capacitors and Capacitive Reactance

$$V_{\text{rms}} = I_{\text{rms}} X_C$$
$$X_C = \frac{1}{2\pi f C}$$

3

23.1 Capacitors and Capacitive Reactance

The resistance in a purely resistive circuit has the same value at all frequencies.

$$V_{\text{rms}} = I_{\text{rms}} R$$

2

23.1 Capacitors and Capacitive Reactance

Example 1 A Capacitor in an AC Circuit

The capacitance is $1.50\mu\text{F}$ and the rms voltage is 25.0 V. What is the rms current when the frequency is (a) 100 Hz and (b) 5000 Hz?

4

23.1 Capacitors and Capacitive Reactance

$$(a) X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi(100 \text{ Hz})(1.50 \times 10^{-6} \text{ F})} = 1060 \Omega$$

$$I_{\text{rms}} = \frac{V_{\text{rms}}}{X_C} = \frac{25.0 \text{ V}}{1060 \Omega} = 0.0236 \text{ A}$$

$$(b) X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi(5000 \text{ Hz})(1.50 \times 10^{-6} \text{ F})} = 21.2 \Omega$$

$$I_{\text{rms}} = \frac{V_{\text{rms}}}{X_C} = \frac{25.0 \text{ V}}{21.2 \Omega} = 1.18 \text{ A}$$

5

For a purely resistive circuit, the current and voltage are **in phase**.

6

23.1 Capacitors and Capacitive Reactance

The current in a capacitor leads the voltage across the capacitor by a phase angle of 90 degrees.

The average power used by a capacitor in an ac circuit is zero.

7

23.1 Capacitors and Capacitive Reactance

23.1 Capacitors and Capacitive Reactance

In the **phasor** model, the voltage and current are represented by rotating arrows (called **phasors**).

These phasors rotate at a frequency f .

The vertical component of the phasor is the instantaneous value of the current or voltage.

8

23.2 Inductors and Inductive Reactance

inductive reactance

$$V_{\text{rms}} = I_{\text{rms}} X_L$$

$$V_0 \sin 2\pi ft$$

$$X_L = 2\pi f L$$

9

23.2 Inductors and Inductive Reactance

The current **lags** behind the voltage by a phase angle of 90 degrees.

$$V_0 \sin 2\pi ft$$

The average power used by an inductor in an ac circuit is zero.

10

23.2 Inductors and Inductive Reactance

11

23.3 Circuits Containing Resistance, Capacitance, and Inductance

In a series RLC circuit, the total opposition to the flow is called the **impedance**.

$$V_{\text{rms}} = I_{\text{rms}} Z$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

12

23.3 Circuits Containing Resistance, Capacitance, and Inductance

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

13

23.3 Circuits Containing Resistance, Capacitance, and Inductance

phase angle between current and total voltage

$$\tan \phi = \frac{V_L - V_C}{V_R} = \frac{X_L - X_C}{R}$$

$$\bar{P} = I_{\text{rms}}^2 Z \cos \phi = I_{\text{rms}} V_{\text{rms}} \cos \phi$$

14

23.4 Resonance in Electric Circuits

Resonance occurs when the frequency of a vibrating force exactly matches a natural (resonant) frequency of the object to which the force is applied.

The oscillation of a mass on a spring is analogous to the oscillation of the electric and magnetic fields that occur, respectively, in a capacitor and an inductor.

15

23.4 Resonance in Electric Circuits

$$Z = \sqrt{R^2 + (2\pi f L - 1/(2\pi f C))^2}$$

$$I_{\text{rms}} = \frac{V_{\text{rms}}}{\sqrt{R^2 + (2\pi f L - 1/(2\pi f C))^2}}$$

Resonant frequency $f_o = \frac{1}{2\pi\sqrt{LC}}$

16

23.5 Semiconductor Devices

Semiconductor devices such as diodes and transistors are widely used in modern electronics.

17

23.5 Semiconductor Devices

(a) Pure material

(b) n-type material

(c) p-type material

n-TYPE AND p-TYPE SEMICONDUCTORS

The semiconducting materials (silicon and germanium) used to make diodes and transistors are **doped** by adding small amounts of an impurity element.

18

23.5 Semiconductor Devices

THE SEMICONDUCTOR DIODE

19

23.5 Semiconductor Devices

At the junction between the n and p materials, mobile electrons and holes combine and create positive and negative charge layers.

20

23.5 Semiconductor Devices

There is an appreciable current through the diode when the diode is forward biased.

Under a reverse bias, there is almost no current through the diode.

21

23.5 Semiconductor Devices

22

23.5 Semiconductor Devices

A half-wave rectifier.

23

23.5 Semiconductor Devices

SOLAR CELLS

24

TRANSISTORS

A bipolar junction transistor can be used to amplify a smaller voltage into a larger one.

25

26

27