## Physics 2212 <br> Exam 1 (practice problems)

1. The light with the wavelength 500 nm propagates through the medium with index of refraction 2.5 . Find the speed and the frequency of the light in the medium.
$1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$6 \times 10^{14} 1 / \mathrm{s}$
2. A double-slit experiment is performed with light of wavelength 600 nm . The interference pattern is observed on a screen 70 cm away from the plane of the slits. The slit separation is 0.2 mm . What is the distance between the second and the fifth maxima?
3. A double-spit experiment is performed with light of wavelength 600 nm . A very wide viewing screen is 2 m behind the grating. What is the distance between the two $\mathrm{m}=2$ bright fringes on the screen? The slit separation is 0.1 mm .

## 48 mm

4. A traveling wave is described by the following equation $E(x, t)=7.2 \sin (6.4 x-3.2 t)$. Find the speed of the wave.

## 0.5

5. A laser beam with wavelength 500 nm is incident on two slits 0.1 mm apart. The interference pattern is observed on a screen 1 m away from the plane of the slits. Determine the number of maxima on the screen within an interval $9.5 \mathrm{~mm}<\mathrm{y}<15.5 \mathrm{~mm}$. Point $\mathrm{y}=0$ corresponds to the center of the pattern.
6. What is the actual thickness of a wall of aquarium if to a fish the wall appears to be 6 mm-think? The index of refraction of the wall is 2.2 .

## 9.9 mm

7. A light ray enters the film as shown in the figure. The film is made of material with index of refraction $n=1.2$. Determine if the light will experience total internal reflection or not.


## TIR

8. The image of the object formed by a lens is observed on a screen. The size of the image is 2 times the size of the object. The distance between the object and the lens is 10 cm . Find the focal length of the lens and the distance between the object and the screen.

## 6.7 cm , 30 cm

9. A $2.0-\mathrm{cm}$-tall object is 10 cm in front of a lens that has a 20 cm focal length. Find the image position and its height.
-20 cm,
4 cm
10. A $1.0-\mathrm{cm}$-tall object is 20 cm in front of a lens that has a -30 cm focal length. Calculate the image position and its height.
