## 1. Waves and Particles <br> 2. Interference of Waves <br> 3. Wave Nature of Light

1. Double-Slit Experiment - reading: Chapter 22
2. Single-Slit Diffraction - reading: Chapter 22
3. Diffraction Grating - reading: Chapter 22

## Chapter 20

## Traveling Waves

## Waves and Particles

Wave - periodic oscillations in space and in time of something

It is moving as a whole with


## Particle and Waves

## Sinusoidal Wave



## Particles



## Sinusoidal Wave

## Plane wave



Frequency of wave $\quad f=\frac{1}{T}=\frac{c}{\lambda}$

## Sin-function



## Sinusoidal (Basic) Wave

$E(x, t)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+2 \pi f t\right)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\omega t\right)$
Distribution of some Field in space and in time with frequency $f \quad f=\frac{1}{T}=\frac{c}{\lambda}$
Distribution of Electric Field

$$
f=\frac{1}{T}=\frac{c}{\lambda}
$$ in space at different time

$$
E(x)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\varphi_{t}\right) \quad \begin{aligned}
& - \text { usual sin-function } \\
& \text { with initial phase }
\end{aligned}
$$



## Sinusoidal Wave

$E(x, t)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+2 \pi f t\right)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\omega t\right) \begin{aligned} & \text { Distribution of some Field in } \\ & \text { space and in time with } \\ & \text { frequency } f\end{aligned}$


At a given time $t$ we have sin-function of $x$ with "initial" phase, depending on $t$

$$
E(x)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\varphi_{t}\right) \quad \varphi_{t}=2 \pi f t=\omega t
$$



At a given space point $x$ we have sin-function of $t$ with "initial" phase, depending on $x$

$$
E(x)=E_{0} \sin \left(\omega t+\varphi_{x}\right) \quad \varphi_{x}=2 \pi \frac{x}{\lambda}
$$

## Particle and Waves

## We can take the sum of many sinusoidal waves (with different wavelengths, amplitudes) = wave pack



Any shape which is moving as a whole with constant velocity


## Wave Pack



## Wave pack can be

 considered as a particle
## Particle and Waves

How can we distinguish between particles and waves?

For waves we have interference, for particles - not!


## Chapter 21

## Interference of Waves

## Sin-function



Interference: THE SUM OF TWO SIGNALS (WAVES)

## Sin-function: Constructive Interference




## Waves and Particles

Interference of waves: THE SUM OF TWO WAVES

Analog of Interference for particles: Collision of two particles


The difference between the interference of waves and collision of particles is the following: THE INTERFERENCE AFFECTS MUCH LARGER REGION OF SPACE THAN COLLISION DOES

## Waves: Interference


$>$ In constructive interference the amplitude of the resultant wave is greater than that of either individual wave
$>$ In destructive interference the amplitude of the resultant wave is less than that of either individual wave

## Waves: Interference



Constructive Interference: The phase difference between two waves should be 0 or integer number of $2 \pi$

$$
\varphi_{x_{1}}-\varphi_{x_{2}}=2 \pi m \quad m=0, \pm 1, \pm 2 \ldots
$$

Destructive Interference: The phase difference between two waves should be $\pi$ or $\boldsymbol{\pi}$ integer number of $\mathbf{2 \pi}$

$$
\varphi_{x_{1}}-\varphi_{x_{2}}=\pi+2 \pi m \quad m=0, \pm 1, \pm 2 \ldots
$$

## Conditions for Interference

To observe interference the following two conditions must be met:

1) The sources must be coherent

- They must maintain a constant phase with respect to each other

2) The sources should be monochromatic

- Monochromatic means they have a single (the same) wavelength


## Conditions for Interference: Coherence

## coherent



The sources should be monochromatic (have the same frequency)

$$
E(x)=E_{0} \sin \left(\omega_{1} t+\varphi\right)
$$



$$
E(x)=E_{0} \sin \left(\omega_{2} t+\varphi\right)
$$

## Waves and Particles



The difference between the interference of waves and collision of particles is the following: THE INTERFERENCE AFFECTS MUCH LARGER REGION OF SPACE THAN COLLISION AND FOR A MUCH LONGER TIME

If we are looking at the region of space that is much larger than the wavelength of wave (or the size of the wave) than the "wave" can be considered as a particle

## Chapter 22

## Light as a Wave: Wave Optics

The Nature of Light - Particle or Waves?

## WAVE?



PARTICLES?


## The Nature of Light - Particle or Waves?

- Before the beginning of the nineteenth century, light was considered to be a stream of particles
- Newton was the chief architect of the particle theory of light
- He believed the particles left the object and stimulated the sense of sight upon entering the eyes

But he was wrong. LIGHT IS A WAVE.


The Nature of Light - Particle or Waves?

How can we distinguish between particles and waves?

For waves we have interference, for particles - not!


## The Nature of Light - Wave Theory?

- Christian Huygens argued that light might be some sort of a wave motion
- Thomas Young (1801) provided the first clear demonstration of the wave nature of light
- He showed that light rays interfere with each other
- Such behavior could not be explained by particles

©2004 Thomson - Brooks/Cole

During the nineteenth century, other developments led to the general acceptance of the wave theory of light

## Plane wave


changes only along one direction


Period of "oscillation" $-T=\frac{\lambda}{c}$ (time to travel distance of wavelength)

$$
f=\frac{1}{T}=\frac{c}{\lambda}
$$

## Light as a Wave

## Light is characterized by

- its speed $C$ and
- wavelength $\lambda$ (or frequency $\boldsymbol{f}$ )

Different frequency (wavelength) - different color of light
Visible Light Region of the Electromagnetic Spectrum


What is the speed of light?

- $d$ is the distance between the wheel and the mirror
- $\Delta t$ is the time for one round trip
- Then $c=2 d / \Delta t$
- Fizeau found a value of $c=3.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$


$$
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad-\text { Speed in Vacuum! }
$$

## Speed of Light

## What is the speed of light in a medium?

The speed of light in a medium is smaller than the speed in vacuum.
To understand this you can think about it in a following way:
$>$ The medium consists of atoms (or molecules), which can absorb light and then emit it,
$>$ so the propagation of light through the medium can be considered as a process of absorption and subsequent emission (AFTER SOME TIME $\Delta \boldsymbol{t}$ )

(free propagation)
very schematic picture

## Speed of Light

$$
\boldsymbol{v}=\frac{\boldsymbol{c}}{\boldsymbol{n}}-\text { The speed of light in the medium }
$$

The properties of the medium is characterized by one dimensionless constant - $n$, (it is called index of refraction, we will see later why)
which is equal to 1 for vacuum (and very close to 1 for air),
$>$ greater then 1 for all other media
Table 35.1

| Indices of Refraction ${ }^{\mathrm{a}}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| Substance | Index of <br> Refraction | Substance | Index of <br> Refraction |
| Solids at $20^{\circ} \mathrm{C}$ |  | Liquids at $20^{\circ} \mathrm{C}$ |  |
| Cubic zirconia | 2.20 | Benzene | 1.501 |
| Diamond $(\mathrm{C})$ | 2.419 | Carbon disulfide | 1.628 |
| Fluorite $\left(\mathrm{CaF}_{2}\right)$ | 1.434 | Carbon tetrachloride | 1.461 |
| Fused quartz $\left(\mathrm{SiO}_{2}\right)$ | 1.458 | Ethyl alcohol | 1.361 |
| Gallium phosphide | 3.50 | Glycerin | 1.473 |
| Glass, crown | 1.52 | Water | 1.333 |
| Glass, flint | 1.66 | Gases at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ |  |
| Ice $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | 1.309 | Air | 1.000293 |
| Polystyrene | 1.49 | Carbon dioxide | 1.00045 |
| Sodium chloride $(\mathrm{NaCl})$ | 1.544 |  |  |

${ }^{\text {a }}$ All values are for light having a wavelength of 589 nm in vacuum.
© 2004 Thomson - Brooks/Cole

## Light in the Media

$E$ at a given point


The same period (frequency) in all media, then

$$
\lambda_{n}=\frac{c}{n} T=\frac{\lambda_{\text {air }}}{n}
$$

$\boldsymbol{v}=\frac{\boldsymbol{c}}{\boldsymbol{n}}-$ The speed of light in the medium

## Light as a Wave

$E(x, t)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+2 \pi f t\right)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\omega t\right) \begin{aligned} & \text { Distribution of some Field } \\ & \text { inside the wave of frequency } f\end{aligned}$


At a given time $t$ we have sin-function of $x$ with "initial" phase, depending on $t$

$$
E(x)=E_{0} \sin \left(2 \pi \frac{x}{\lambda}+\varphi_{t}\right) \quad \varphi_{t}=2 \pi f t=\omega t
$$



At a given space point $x$ we have sin-function of $t$ with "initial" phase, depending on $x$

$$
E(x)=E_{0} \sin \left(\omega t+\varphi_{x}\right) \quad \varphi_{x}=2 \pi \frac{x}{\lambda}
$$

## Sin-function: Constructive Interference




## Waves: Interference


$>$ In constructive interference the amplitude of the resultant wave is greater than that of either individual wave
$>$ In destructive interference the amplitude of the resultant wave is less than that of either individual wave

## Waves: Interference



Constructive Interference: The phase difference between two waves should be 0 or integer number of $2 \pi$

$$
\varphi_{x_{1}}-\varphi_{x_{2}}=2 \pi m \quad m=0, \pm 1, \pm 2 \ldots
$$

Destructive Interference: The phase difference between two waves should be $\pi$ or $\boldsymbol{\pi}$ integer number of $\mathbf{2 \pi}$

$$
\varphi_{x_{1}}-\varphi_{x_{2}}=\pi+2 \pi m \quad m=0, \pm 1, \pm 2 \ldots
$$

## Conditions of Interference

## coherent



The sources should be monochromatic (have the same frequency)

$$
E(x)=E_{0} \sin \left(\omega_{1} t+\varphi\right)
$$



$$
E(x)=E_{0} \sin \left(\omega_{2} t+\varphi\right)
$$

## 1. Double-Slit Experiment

 (interference)
©2004 Thomson - Brooks/Cole
2. Single-Slit Diffraction


## Young's Double-Slit Experiment

- Thomas Young first demonstrated interference in light waves from two sources in 1801
- The narrow slits $S_{1}$ and $S_{2}$ act as sources of waves
- The waves emerging from the slits originate from the same wave front and therefore are always in phase



## Double-Slit Experiment: Interference

$E(x)=E_{0} \sin \left(\omega t+\varphi_{x}\right)$
$\varphi_{x}=2 \pi \frac{x}{\lambda}$
The phase of wave 1:

$$
\varphi_{x, 1}=2 \pi \frac{x_{1}}{\lambda}
$$

The phase of wave 2 :
$\varphi_{x, 2}=2 \pi \frac{x_{2}}{\lambda}$

Constructive Interference: $\varphi_{x, 2}-\varphi_{x, 1}=\mathbf{2 \pi n} \quad$ where $n$ is integer (bright fringe)

$$
2 \pi \frac{x_{2}}{\lambda}-2 \pi \frac{x_{1}}{\lambda}=2 \pi n \quad \longrightarrow x_{2}-x_{1}=n \lambda
$$

Destructive Interference: $\quad \varphi_{x, 2}-\varphi_{x, 1}=\pi+2 \pi n \quad$ where $n$ is integer (dark fringe)

$$
x_{2}-x_{1}=\frac{\lambda}{2}+n \lambda
$$

## Double-Slit Experiment: Interference

Constructive Interference: (bright fringe)

$$
x_{2}-x_{1}=n \lambda
$$


(a)

$$
x_{2}-x_{1}=0
$$

Destructive Interference: (dark fringe)

$$
x_{2}-x_{1}=\frac{\lambda}{2}+n \lambda
$$


(b)

$$
x_{2}-x_{1}=\lambda
$$


(c)

$$
x_{2}-x_{1}=\frac{\lambda}{2}
$$

## Double-Slit Experiment: Interference

- The path difference, $\delta$, is found from the tan triangle
- $\delta=x_{2}-x_{1}=d \sin \theta$
- This assumes the paths are parallel
- Not exactly true, but a very
 good approximation if $L$ is much greater than $d$


## Double-Slit Experiment: Interference

$$
\delta=x_{2}-x_{1}=d \sin \theta
$$


(a)

Bright fringes (constructive interference):

$$
\delta=d \sin \theta=n \lambda \quad n=0, \pm 1, \pm 2, \ldots
$$

$n$ is called the order number

- when $n=0$, it is the zeroth-order maximum
- when $n= \pm 1$, it is called the first-order maximum

Dark fringes (destructive interference):

$$
\delta=d \sin \theta=(n+1 / 2) \lambda \quad n=0, \pm 1, \pm 2, \ldots
$$

## Double-Slit Experiment: Interference

$$
\delta=x_{2}-x_{1}=d \sin \theta
$$

The positions of the fringes can be measured vertically from the zeroth-order maximum
$\theta$ is small and therefore the small angle

(a) approximation $\tan \theta \sim \sin \theta$ can be used

$$
y=L \tan \theta \approx L \sin \theta
$$

For bright fringes

$$
y_{\text {bright }}=\frac{\lambda}{d} n \quad(\mathrm{n}=0, \pm 1, \pm 2 \ldots)
$$

For dark fringes

$$
y_{\text {dark }}=\frac{\lambda}{d}\left(n+\frac{1}{2}\right) \quad(n=0, \pm 1, \pm 2 \ldots)
$$



Constructive Interference: $\varphi_{x, 2}-\varphi_{x, 1}=\mathbf{2 \pi m}$
where $m$ is $m=0, \pm 1, \pm 2, \ldots$ (bright fringe)
integer

$$
\begin{aligned}
2 \pi \frac{x_{2}}{\lambda}-2 \pi \frac{x_{1}}{\lambda}=2 \pi m & x_{2}-x_{1}=m \lambda \\
& y_{\text {bright }}=\frac{\lambda L}{d} m \quad(m=0, \pm 1, \pm 2 \ldots)
\end{aligned}
$$

Destructive Interference: $\varphi_{x, 2}-\varphi_{x, 1}=\boldsymbol{\pi}+\mathbf{2 \pi m} \quad$ where $m$ is integer $m=\mathbf{0}, \pm \mathbf{1}, \pm \mathbf{2}, \ldots$ (dark fringe)

$$
\begin{gathered}
x_{2}-x_{1}=\frac{\lambda}{2}+m \lambda \\
y_{\text {dark }}=\frac{\lambda L}{d}\left(m+\frac{1}{2}\right) \quad(m=0, \pm 1, \pm 2 \ldots)
\end{gathered}
$$

## Double-Slit Experiment: Example

The two slits are separated by 0.150 mm , and the incident light includes light of wavelengths $\lambda_{1}=540 \mathrm{~nm}$ and $\lambda_{2}=450 \mathrm{~nm}$. At what minimal distance from the center of the screen the bright line of the $\lambda_{1}$ light coincides with a bright line of the $\boldsymbol{\lambda}_{2}$ light

Bright lines:

$$
\begin{aligned}
& y_{\text {bright }, 1}=\frac{\lambda_{1} L}{d} m_{1} \quad\left(m_{1}=0, \pm 1, \pm 2 \ldots\right) \\
& y_{\text {bright }, 2}=\frac{\lambda_{2} L}{d} m_{2} \quad\left(m_{2}=0, \pm 1, \pm 2 \ldots\right)
\end{aligned}
$$

$$
0.15 \mathrm{~mm}
$$

$$
y_{\text {bright }, 1}=\frac{540 \cdot 10^{-9} \cdot 1.4}{0.15 \cdot 10^{-3}} m_{1}(\mathrm{~m})=5 m_{1}(\mathrm{~mm}) \quad\left(m_{1}=0, \pm 1, \pm 2 \ldots .\right)
$$


$y_{\text {bright }, 2}=\frac{450 \cdot 10^{-9} \cdot 1.4}{0.15 \cdot 10^{-3}} m_{2}(\mathrm{~m}) \approx 4 m_{2}(\mathrm{~mm}) \quad\left(\mathrm{m}_{2}=0, \pm 1, \pm 2 \ldots\right)$

$$
\begin{aligned}
& y_{\text {bright }, 1}=0,5,10,15,20,25 \ldots(\mathrm{~mm}) \\
& y_{\text {bright }, 1}=0,4,8,12,16,20 \ldots(\mathrm{~mm})
\end{aligned}
$$

## Double-Slit Experiment: Example

Light with a wavelength of 442 nm passes through a double-slip system that has a slip separation $d=0.4 \mathrm{~mm}$. Determine $L$ so that the first dark fringe appears directly opposite both slits.

Dark lines:

$$
\begin{aligned}
y_{\text {dark }, \mathrm{n}} & =\frac{\lambda L}{d}\left(m+\frac{1}{2}\right) \\
y_{\text {dark }, 1} & =\frac{d}{2} \\
y_{\text {dark }, 1} & =\frac{1}{2} \frac{\lambda L}{d} \\
\frac{d}{2} & =\frac{1}{2} \frac{\lambda L}{d} \\
L & =\frac{d^{2}}{\lambda}=\frac{0.4^{2} \cdot 10^{-6} m^{2}}{442 \cdot 10^{-9} m}=0.36 m=36 \mathrm{~cm}
\end{aligned}
$$

## Chapter 22

## Diffraction Pattern and Interference

## Diffraction

## Diffraction:

Light spreads beyond the narrow path defined by the slit into regions that would be in shadow if light traveled in straight lines


Geometric Optics - if $\boldsymbol{d} \gg \boldsymbol{\lambda}$


Diffraction and Interference are closely related;
Diffraction Patterns are due to Interference

## Diffraction Pattern



## Huygens's Principle

## Huygens's Principle

Huygens's Principle is a geometric construction for determining the position of a new wave at some
 point based on the knowledge of the wave front that preceded it
$>$ All points on a given wave front are taken as point sources for the production of spherical secondary waves, called wavelets, which propagate outward through a medium with speeds characteristic of waves in that medium
$>$ After some time has passed, the new position of the wave front is the surface tangent to the wavelets

(a)

## Single-Slip Diffraction

## Single Slit Diffraction

- Each portion of the slit acts as a source of light waves
- Therefore, light from one portion of the slit can interfere with light from another portion



## Intensity of Single-Slit Diffraction Pattern

$$
\begin{aligned}
& I(\varphi)=I_{\max }\left[\frac{\sin (\varphi / 2)}{\varphi / 2}\right]^{2} \quad \varphi=\frac{2 \pi a \sin \theta}{\lambda} \\
& I(\theta)=I_{\max }\left[\frac{\sin (\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda}\right]^{2}
\end{aligned}
$$



The first minimum occurs at

$$
\begin{aligned}
& \sin (\varphi / 2)=\mathbf{0} \quad \text { or } \quad \varphi=2 \pi \quad \text { or } \\
& \sin \theta_{\text {dark }}=\lambda / a
\end{aligned}
$$


(a)

(b)


## Diffraction: Example

The source of the light emits the light with wavelength $\lambda=\mathbf{5 4 0} \mathbf{n m}$.
The diffraction pattern is observed in the water, $\boldsymbol{n}=\mathbf{1 . 3 3}$.
$L=10 \mathrm{~m}, \mathrm{a}=0.5 \mathrm{~mm}$
What is the size of the spot, $D$ ?

$D=\frac{L \lambda}{n a}=\frac{10 \cdot 540 \cdot 10^{-9}}{1.33 \cdot 0.5 \cdot 10^{-3}} m=8 \cdot 10^{-3} m=8 \mathrm{~mm}$


## Chapter 22

## Diffraction Grating

## Diffraction Grating

$>$ The diffraction grating consists of a large number of equally spaced parallel slits

- A typical grating contains several thousand lines per centimeter
$>$ The intensity of the pattern on the screen is the result of the combined effects of interference and diffraction
- Each slit produces diffraction, and the diffracted beams interfere with one another to form the final pattern



## $N$-Slit Interference: Intensity Graph



For $N$ slits, the primary maxima is $N^{2}$ times greater than that due to a single slit

## Diffraction Grating

The condition for maxima is

$$
\Delta \varphi=2 \pi m, \quad m=0, \pm 1, \pm 2, \ldots
$$

$$
\Delta \varphi=2 \pi \frac{\delta}{\lambda}=2 \pi \frac{d \sin \theta_{\text {bright }}}{\lambda}
$$

then

$$
d \sin \theta_{\text {bright }}=m \lambda
$$

The integer $m$ is the order number of the diffraction pattern

$$
\Delta \varphi=2 \pi m
$$



## Diffraction Grating

- All the wavelengths are seen at $m=0$

$$
d \sin \theta_{\text {bright }}=m \lambda
$$

- This is called the zerothorder maximum
- The first-order maximum corresponds to $m=1$
- Note the sharpness of the principle maxima and the broad range of the dark areas



## Diffraction Grating Spectrometer

- The collimated beam is incident on the grating
- The diffracted light leaves the gratings and the telescope is used to view the image
- The wavelength can be determined by measuring the precise angles at which the images of the slit appear for the various orders



## Diffraction Grating: Example

Three discrete spectral lines occur at angles $10.09^{0}, 13.71^{0}$, and $14.77^{\circ}$ in the first order spectrum of a grading spectrometer. If the grading has $N=3600$ slits per centimeter, what are the wavelength of the light?
$d \sin \theta_{\text {bright }}=m \lambda$
First order means that $m=1$, then

Incoming plane
wave of light

$d=\frac{1 \mathrm{~cm}}{N}$
Then

$$
\lambda_{1}=\frac{1}{N} \sin \theta_{1}=\frac{\sin 10.09}{3600} \mathrm{~cm}=480 \mathrm{~nm} \quad \lambda_{2}=\frac{\sin 13.71}{3600} \mathrm{~cm}=658 \mathrm{~nm} \quad \lambda_{3}=\frac{\sin 14.77}{3600} \mathrm{~cm}=708 \mathrm{~nm}
$$

## Chapter 22

## Michelson Interferometer

## Michelson Interferometer

- A ray of light is split into two rays by the mirror $M_{0}$
- The mirror is at $45^{\circ}$ to the incident beam
- The mirror is called a beam splitter
- It transmits half the light and reflects the rest
- The two rays travel separate paths $L_{1}$ and $L_{2}$

$$
\Delta \varphi=2 \pi \frac{2\left(L_{2}-L_{1}\right)}{\lambda}
$$

Maximum (constructive interference):

$$
\begin{aligned}
& \Delta \varphi=2 \pi \frac{2\left(L_{2}-L_{1}\right)}{\lambda}=2 \pi m \\
& 2\left(L_{2}-L_{1}\right)=\lambda m \quad m=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

## Michelson Interferometer

The maximum - with and without glass film. What is the value of $d$ ?

Without glass film: maximum (constructive interference):

$$
2\left(L_{2}-L_{1}\right)=m_{1} \lambda \quad m_{1}=0, \pm 1, \pm 2, \ldots
$$

With glass film: maximum (constructive
 interference):

$$
\Delta \varphi=2 \pi \frac{2 L_{2}}{\lambda}-2 \pi \frac{2\left(L_{1}-d\right)}{\lambda}-2 \pi n \frac{2 d}{\lambda}
$$

$$
\Delta \varphi=2 \pi m_{2} \quad 2\left[L_{2}-L_{1}-d(n-1)\right]=m_{2} \lambda
$$

$$
m_{2}=0, \pm 1, \pm 2, \ldots
$$

$$
\begin{array}{r}
2 d(n-1)=\left(m_{2}-m_{1}\right) \lambda=m_{3} \lambda \\
m_{3}=0, \pm 1, \pm 2, \ldots
\end{array}
$$

