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Faraday’s Law

Chapter 31
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Ampere’s law

 Magnetic field is produced by time variation of electric field

B


ds

E


 I I I 
     E

o d o o o
dd μ μ με
dt

B s
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Induction

• A loop of wire is connected to a sensitive 
ammeter

• When a magnet is moved toward the loop, 
the ammeter deflects
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Induction

• An induced current is produced by a changing 
magnetic field

• There is an induced emf associated with the induced 
current

• A current can be produced without a battery present 
in the circuit

• Faraday’s law of induction describes the induced emf
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Induction

• When the magnet is held stationary, there is 
no deflection of the ammeter

• Therefore, there is no induced current
– Even though the magnet is in the loop



6

Induction

• The magnet is moved away from the loop
• The ammeter deflects in the opposite 

direction
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Induction

• The ammeter deflects when the magnet is moving toward 
or away from the loop

• The ammeter also deflects when the loop is moved 
toward or away from the magnet

• Therefore, the loop detects that the magnet is moving 
relative to it
– We relate this detection to a change in the magnetic field
– This is the induced current that is produced by an 

induced emf
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Faraday’s law

• Faraday’s law of induction states that “the emf 
induced in a circuit is directly proportional to the 
time rate of change of the magnetic flux through 
the circuit”

• Mathematically,


  Bd
ε

dt
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Faraday’s law

• Assume a loop enclosing an area A lies in a uniform 
magnetic field B

• The magnetic flux through the loop is B = BA cos 
• The induced emf is

• Ways of inducing emf:
• The magnitude of B can change                                                 

with time
• The area A enclosed by                                                

the loop can change with time
• The angle  can change with time
• Any combination of the above can occur

( cos )d BA
dt

  



10

Motional emf

• A motional emf is one induced in a conductor moving 
through a constant magnetic field

• The electrons in the conductor experience a force,     
FB = qv x B that is directed along ℓ
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Motional emf

FB = qv x B

• Under the influence of the force, the 
electrons move to the lower end of the 
conductor and accumulate there

• As a result, an electric field E is 
produced inside the conductor

• The charges accumulate at both ends of 
the conductor until they are in equilibrium 
with regard to the electric and magnetic 
forces

qE = qvB or     E = vB
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Motional emf

E = vB

• A potential difference is maintained 
between the ends of the conductor as 
long as the conductor continues to move 
through the uniform magnetic field

• If the direction of the motion is reversed, 
the polarity of the potential difference is 
also reversed
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Example: Sliding Conducting Bar

E vB

El Blv  
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Example: Sliding Conducting Bar

• The induced emf is


      Bd dx

ε B B v
dt dt

I  
ε B v

R R
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Lenz’s law

• Faraday’s law indicates that the induced emf and the 
change in flux have opposite algebraic signs

• This has a physical interpretation that has come to be 
known as Lenz’s law

• Lenz’s law: the induced current in a loop is in the 
direction that creates a magnetic field that opposes the 
change in magnetic flux through the area enclosed by 
the loop

• The induced current tends to keep the original magnetic 
flux through the circuit from changing


  Bd

ε
dt
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Lenz’s law

• Lenz’s law: the induced current in a loop is in the 
direction that creates a magnetic field that opposes the 
change in magnetic flux through the area enclosed by 
the loop

• The induced current tends to keep the original magnetic 
flux through the circuit from changing


  Bd

ε
dt

B

I
IB

B is increasing with time

B

I
IB

B is decreasing with time
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Electric and Magnetic Fields

 

E t


B


E

 

B t

Ampere-Maxwell law Faraday’s law
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Example 1

 tαeII   
max 1 .A long solenoid has n turns per meter and carries a current                 

Inside the solenoid and coaxial with it is a coil that has a radius R and 
consists of a total of N turns of fine wire. 
What emf is induced in the coil by the changing current?

   I oB t μn t

     I  2 2
ot πR NB t μπR Nn t

   
max


    2 2 αt

o o

d t dI t
ε μπR Nn μπR NnαI e

dt dt
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Example 2

A single-turn, circular loop of radius R is coaxial with a long solenoid 
of radius r and length ℓ and  having N turns. The variable resistor is 
changed so that the solenoid current decreases linearly from I1 to I2
in an interval Δt. Find the induced emf in the loop. 

   
l

 o
NB t μ I t

     I
l

  2 2
o

Nt πr B t μπr t

   
l l

 
     


2 2 2 1

o o

d t dI t I IN N
ε μπr μπr

dt dt t
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Example 3

A square coil (20.0 cm × 20.0 cm) that consists of 100 turns of wire 
rotates about a vertical axis at 1 500 rev/min. The horizontal component 
of the Earth’s magnetic field at the location of the coil is 2.00 × 10-5 T. 
Calculate the maximum emf induced in the coil by this field.

( cos )d BA
dt

  

cosBA  

t 

(cos ) sind tBA BA t
dt
    

max 12.6BA mV  
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Induction

Chapter 32
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Self-Inductance

• When the switch is closed, the 
current does not immediately reach 
its maximum value

• Faraday’s law can be used to 
describe the effect

• As the current increases with time, 
the magnetic flux through the 
circuit loop due to this current also 
increases with time

• This corresponding flux due to this 
current also increases

• This increasing flux creates an 
induced emf in the circuit
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Self-Inductance

• Lenz Law: The direction of the induced 
emf is such that it would cause an 
induced current in the loop which would 
establish a magnetic field opposing the 
change in the original magnetic field

• The direction of the induced emf is 
opposite the direction of the emf of the 
battery

• This results in a gradual increase in the 
current to its final equilibrium value

• This effect is called self-inductance
• The emf εL is called a self-induced emf
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Self-Inductance: Coil Example

• A current in the coil produces a magnetic field directed 
toward the left

• If the current increases, the increasing flux creates an 
induced emf of the polarity shown in (b)

• The polarity of the induced emf reverses if the current 
decreases
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Solenoid 

• Assume a uniformly wound solenoid having 
N turns and length ℓ

• The interior magnetic field is

• The magnetic flux through each turn is

• The magnetic flux through all N turns

• If I depends on time then self-induced emf 
can found from the Faraday’s law

I I 


o o
NB μn μ

I  


B o
NABA μ

I   


2

t B o
N AN μ


   



2
t

si o
d N A dI

ε μ
dt dt
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Solenoid 

• The magnetic flux through all N turns

• Self-induced emf:

I I  


2

t o
N A

μ L


     



2
t

si o
d N A dI dI

ε μ L
dt dt dt
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Inductance 

 L is a constant of proportionality called the inductance
of the coil and it depends on the geometry of the coil and 
other physical characteristics

 The SI unit of inductance is the henry (H)

Named for Joseph Henry 

I
 L

d
ε L

dt
I  L

A
sV1H1 


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Inductor

I
 L

d
ε L

dt I  L

• A circuit element that has a large self-inductance is called 
an inductor

• The circuit symbol is 
• We assume the self-inductance of the rest of the circuit is 

negligible compared to the inductor
– However, even without a coil, a circuit will have some 

self-inductance

I 1 1L I 2 2L

I I

Flux through 
solenoid

Flux through 
the loop

1 2L L
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The effect of Inductor 

I
 L

d
ε L

dt
I  L

• The inductance results in a back emf
• Therefore, the inductor in a circuit opposes changes 

in current in that circuit
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RL circuit 

I
 L

d
ε L

dt
I  L

• An RL circuit contains an inductor 
and a resistor

• When the switch is closed (at time 
t = 0), the current begins to 
increase

• At the same time, a back emf is 
induced in the inductor that 
opposes the original increasing 
current
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RL circuit I
 L

d
ε L

dt

• Kirchhoff’s loop rule:

• Solution of this equation:

II   0d
ε R L

dt

 I  1 Rt Lε e
R  I  1 t τε e

R
where               - time constant/τ L R
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RL circuit 

 I  1 t τε e
R

I  t τd εe
dt L
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Energy Density of Magnetic Field

Chapter 32
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Energy of Magnetic Field 

I
 L

d
ε L

dt
II 

d
ε R L

dt

• Let U denote the energy stored in the 
inductor at any time

• The rate at which the energy is stored is

• To find the total energy, integrate and

IIdU dL
dt dt



II I I 2 d
ε R L

dt

I
I I 

2

0
 

2
IU L d L
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Energy of a Magnetic Field

• Given U = ½ L I 2

• For Solenoid: 

• Since Aℓ is the volume of the solenoid, the magnetic 
energy density, uB is

• This applies to any region in which a magnetic field 
exists (not just the solenoid)

 
  

 
 

2 2
21

2 2o
o o

B BU μn A A
μn μ

 


2

2B
o

U Bu
A μ

 2
oL μn A 

o

BI
μn
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Energy of Magnetic and Electric Fields


2

2L
IU L

2

2C
QU C
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LC Circuit 

Chapter 32
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LC Circuit

• A capacitor is connected to 
an inductor in an LC circuit

• Assume the capacitor is 
initially charged and then the 
switch is closed

• Assume no resistance and 
no energy losses to radiation
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LC Circuit

• With zero resistance, no energy is transformed 
into internal energy

• The capacitor is fully charged
– The energy U in the circuit is stored in the electric 

field of the capacitor
– The energy is equal to Q2

max / 2C
– The current in the circuit is zero
– No energy is stored in the inductor

• The switch is closed
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LC Circuit

• The current is equal to the rate at which the charge 
changes on the capacitor
– As the capacitor discharges, the energy stored in 

the electric field decreases
– Since there is now a current, some energy is 

stored in the magnetic field of the inductor
– Energy is transferred from the electric field to 

the magnetic field


dQI
dt
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LC circuit


dQI
dt

 0Q

maxI

• The capacitor becomes fully discharged
– It stores no energy
– All of the energy is stored in the magnetic field of the 

inductor
– The current reaches its maximum value

• The current now decreases in magnitude, recharging the 
capacitor with its plates having opposite their initial polarity
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LC circuit

• Eventually the capacitor becomes fully charged and 
the cycle repeats

• The energy continues to oscillate between the 
inductor and the capacitor

• The total energy stored in the LC circuit remains 
constant in time and equals

2
21

2 2
IC L

QU U U L
C

   


dQI
dt
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LC circuit


dQI
dt

 
Q dIL
C dt

 
2

2
Q d QL
C dt

 max cos Q Q ωt φSolution:

   max
maxcos cos  2Q

ωt φ LQ ω ωt φ
C

2 1
ω

LC
It is the natural frequency of oscillation of the circuit
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LC circuit

 max cos Q Q ωt φ

2 1
ω

LC

• The current can be expressed as a function of time

• The total energy can be expressed as a function of time
maxI sin( )   

dQ
ωQ ωt φ

dt

max max
maxcos I sin    

2 2
2 2 21

2 2 2C L
Q QU U U ωt L ωt

c c

max
maxI

2
21

2 2
Q L

c
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LC circuit

• The charge on the capacitor 
oscillates between Qmax and -Qmax

• The current in the inductor 
oscillates between Imax and -Imax

• Q and I are 90o out of phase with 
each other
– So when Q is a maximum, I is 

zero, etc.

 max cos Q Q ωt φ

maxI sin( )  ωQ ωt φ
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LC circuit

• The energy continually 
oscillates between the energy 
stored in the electric and 
magnetic fields

• When the total energy is stored 
in one field, the energy stored 
in the other field is zero
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LC circuit

• In actual circuits, there is always some 
resistance

• Therefore, there is some energy 
transformed to internal energy

• Radiation is also inevitable in this type 
of circuit

• The total energy in the circuit 
continuously decreases as a result of 
these processes



48

Problem 2

A capacitor in a series LC circuit has an initial charge Qmax and is being 
discharged. Find, in terms of L and C, the flux through each of the N turns 
in the coil, when the charge on the capacitor is Qmax /2.  

max  
3

2
QLLI

C

max I 
2 2

21
2 2 2

Q Q L
C C

The total energy is conserved: 

max
2

QQ

max max max maxI     
2 2 2 22

2 31 1
2 2 2 2 4 2 8

Q Q Q QQL
C C C C C

max
3

2
I Q

CL
max

  1
3

2
QL

N C N
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Maxwell’s Equations

Chapter 31
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Maxwell’s Equations

 

I

 

 


  


  









�

�

�

�

Gauss's law electric

0 Gauss's law in magnetism

Faraday's law

Ampere-Maxwell law

oS

S

B

E
o o o

qd
ε

d

dd
dt

dd μ εμ
dt

E A

B A

E s

B s
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Electromagnetic Waves

Chapter 34
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Maxwell Equations – Electromagnetic Waves  

• Electromagnetic waves – solutions of Maxwell equations

I

   

 
     

 

 

� �

� �

0
o

B E
o o o

qd d
ε

d dd d μ με
dt dt

E A B A

E s B s

• Empty space: q = 0, I = 0

   

 
    

 

 

� �

� �

0 0

B E
o o

d d

d dd d με
dt dt

E A B A

E s B s

• Solution – Electromagnetic Wave 
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Plane Electromagnetic Waves  

• Assume EM wave that travel in x-direction
• Then Electric and Magnetic Fields are orthogonal to x
• This follows from the first two Maxwell equations

    � �0 0d dE A B A
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Plane Electromagnetic Waves  

If Electric Field and Magnetic Field depend only on x and t
then the third and the forth Maxwell equations can be
rewritten as 

 
     � �B E

o o
d dd d με
dt dt

E s B s

   
 

   

2 2 2 2

2 2 2 2o o o o
E E B B

με and με
x t x t


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Plane Electromagnetic Waves  

   
 

   

2 2 2 2

2 2 2 2o o o o
E E B B

με and με
x t x t

Solution:

max cos( )E E kx ωt

max


  


2
2

2 cos( )E E k kx ωt
x max


  



2
2

2 cos( )E E ω kx ωt
t

max max 2 2
0 0cos( )= cos( )E k kx ωt μεE ω kx ωt

0 0=k ω με
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Plane Electromagnetic Waves  

max cos( )E E kx ωt

0 0=k ω με

The angular wave number is k = 2π/λ
- λ is the wavelength

The angular frequency is ω = 2πƒ
- ƒ is the wave frequency

0 0
2 =2π

πf με
λ

 
0 0

1 c
λ

ff με

/   8

0 0

1 2.99792 10c m s
με

- speed of light
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Plane Electromagnetic Waves  

max cos( )E E kx ωt

ω ck 
c

λ
f


0 0

1c
με

max cos( )H H kx ωt

  max

max

E ω E c
B k B

E and B vary sinusoidally with x
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Time Sequence of Electromagnetic Wave
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Poynting Vector  

• Electromagnetic waves carry energy
• As they propagate through space, they can transfer that 

energy to objects in their path
• The rate of flow of energy in an em wave is described by 

a vector, S, called the Poynting vector
• The Poynting vector is defined as

 
1
oμ

S E B
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Poynting Vector  

• The direction of Poynting vector is the direction of 
propagation

• Its magnitude varies in time
• Its magnitude reaches a maximum at the same instant as 

E and B

 
1
oμ

S E B
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Poynting Vector  

• The magnitude S represents the rate at which energy 
flows through a unit surface area perpendicular to the 
direction of the wave propagation
– This is the power per unit area

• The SI units of the Poynting vector are J/s.m2 = W/m2

 
1
oμ

S E B
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The EM spectrum

• Note the overlap between 
different types of waves

• Visible light is a small 
portion of the spectrum

• Types are distinguished 
by frequency or 
wavelength


