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Fundamentals of Circuits

Chapter 31
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Capacitors in Series 





V

1V


2V

1C 2C

1 2V V V    
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Conductor in Electric Field
no electric field 

E


E


E


equilibrium 

0E 

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Conductor in Electric Field
no electric field 

E


E


conducting wire 

conducting wire 
E


ELECTRIC CURRENT 
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Electric Current

Electric current is the rate 
of flow of charge through 
some region of space

• The SI unit of current is the 
ampere (A),   1 A = 1 C / s

• Assume charges are moving 
perpendicular to a surface of 
area A

• If Q is the amount of charge 
that passes through A in time  
t, then the average current is av

Q
t





I
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Ohm’s Law

Chapter 28 
Chapter 31
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Current Density

Ij
A



Current density is defined as 
the current per unit area

This expression is valid only if the current 
density is uniform and A is perpendicular to 
the direction of the current

j has SI units of A/m2
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Ohm’s Law

j E

Ohm’s Law:
Current density is proportional 
to electric field

E


The constant of proportionality, σ, is called 
the conductivity of the conductor.

The conductivity depends only on the material 
of conductor.

2n q
m
 Simplified model of electron 

motion in conductor gives

 - is the material dependent characteristic of conductor. 
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Ohm’s Law

• Ohm’s law states that for many materials, the ratio of the 
current density to the electric field is a constant σ that is 
independent of the electric field producing the current
– Most metals, but not all, obey Ohm’s law
– Materials that obey Ohm’s law are said to be ohmic
– Materials that do not obey Ohm’s law are said to be 

nonohmic
• Ohm’s law is not a fundamental law of nature
• Ohm’s law is an empirical relationship valid only for 

certain materials

j E
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Ohm’s Law

Conductor

E


A

B

Voltage across the conductor (potential 
difference between points A and B) 

B AV V V El   

l

where electric field is the same along 
the conductor. Then 

VE
l



Ij
A



1V IE j
l A 


  

j E

lV I RI
A

  Another form of the Ohm’s Law 
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Ohm’s Law: Resistance

Conductor

E


A

B
l

V RI 

 The voltage applied across the 
ends of the conductor is proportional 
to the current through the conductor
 The constant of proportionality is 
called the resistance of the 
conductor

resistance 

SI units of resistance are ohms (Ω)
1 Ω = 1 V / A
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Ohm’s Law: Resistance

Conductor

E


A

B
l V RI 

lR
A



resistance 

lR
A




Or 

where                 is the resistivity –
the inverse of the conductivity 

1/ 

Resistivity has SI units of ohm-meters (Ω m)
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Resistance: Example

Conductor l
lR
A



The same amount of material has 
been used to fabricate the wire with 
uniform cross-section and length l/3. 
What is the resistance of the wire?

1
1

1

l
R

A


1 1l A lA 1 / 3l l

1
1

3lAA A
l

 

1
1

1

/ 3
3 9 9

l l l RR
A A A

     
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Ohm’s Law

– Materials that obey Ohm’s law are said to be ohmic
– Materials that do not obey Ohm’s law are said to be 

nonohmic

j E V RI 

An ohmic device
 The resistance is constant over a 
wide range of voltages
 The relationship between current 
and voltage is linear
 The slope is related to the 
resistance



15

Ohm’s Law

– Materials that obey Ohm’s law are said to be ohmic
– Materials that do not obey Ohm’s law are said to be 

nonohmic

j E V RI 

Nonohmic materials
 The current-voltage relationship 
is nonlinear
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Electric Power

Chapter 31
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Electrical Power VI
R




f i
qEv v t
m

 


 

Before the collision 

After the collision
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Electrical Power VI
R




 As a charge moves from a to b, 
the electric potential energy of the 
system increases by
 The chemical energy in the 
battery must decrease by the 
same amount

 As the charge moves through the 
resistor (c to d), the system loses 
this electric potential energy during 
collisions of the electrons with the 
atoms of the resistor
 This energy is transformed into 
internal energy in the resistor

Q V
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Electrical Power 

VI
R




U Q V  

 The power is the rate at which the 
energy is delivered to the resistor

- the energy delivered to 
the resistor when charge 
Q moves from a to b
(or from c to d)

U QP V I V
t t


    

 

The power:

2
2 VP I V I R

R


   

Units: I is in A, R is in Ω, V is in V, and  P is in W
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Electrical Power VI
R




The power:
2

2 VP I V I R
R


   

2

( )
VP

R T


 Will increase the 
temperature of conductor

2

( )
VP

R T




T

Electromagnetic waves (light), ( )EMWP T

Heat transfer to air 0( ) ( )airP T T T 
2

0( ) ( )
( ) EMW
VP P T T T

R T



   
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Power: Example

N
lR
A



A 1000-W heating coil designed to operate from 110 V is made of 
Nichrome wire 0.5 mm in diameter. Assuming that the resistivity of the 
Nichrome remains constant at its 20 C value, find the length of wire used. 

61.5 10N m    

2
2 UP I V I R

R
   

2UR
P



2 2 2 2 6 2

6

3.14 0.5 10 110 1.58
4 4 1.5 10 1000N N N

R U d Ul A A m m
P P


  





  
    

  

2

4
dA 
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Direct Current

Chapter 31
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Direct Current

• When the current in a circuit has a 
constant magnitude and direction, 
the current is called direct current

• Because the potential difference 
between the terminals of a battery 
is constant, the battery produces 
direct current

• The battery is known as a source of 
emf (electromotive force)
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Resistors in Series

Ohm’s law: 2c bV V IR 

1b aV V IR 

 2 1 1 2

c a c b b aV V V V V V
IR IR I R R

     

   

1 2eqR R R 

For a series combination of resistors, the currents are the 
same in all the resistors because the amount of charge that 
passes through one resistor must also pass through the 
other resistors in the same time interval

The equivalent resistance has the same effect on the 
circuit as the original combination of resistors
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Resistors in Series

• Req = R1 + R2 + R3 + …
• The equivalent resistance of a series combination of 

resistors is the algebraic sum of the individual resistances 
and is always greater than any individual resistance
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Resistors in Parallel 

Ohm’s law: 1 1b aV V V I R   

1 2I I I 

 The potential difference across each resistor is the same 
because each is connected directly across the battery terminals
 The current, I, that enters a point must be equal to the total 
current leaving that point

I = I1 + I2
- Consequence of Conservation of Charge

2 2b aV V V I R   

Conservation of Charge: 

1 2 1 2

1 1
eq

V V VI V
R R R R R

   
      

 
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Resistors in Parallel 

1 2

1 1 1
eqR R R

 

 Equivalent Resistance

– The equivalent is always less than the smallest resistor in 
the group

 In parallel, each device operates independently of the others 
so that if one is switched off, the others remain on

 In parallel, all of the devices operate on the same voltage
 The current takes all the paths

– The lower resistance will have higher currents
– Even very high resistances will have some currents

1 2 3

1 1 1 1
eqR R R R
   
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Example  

1 2

8 4 12
eqR R R  

  

1 2

1 1 1 1 1 1
6 3 2eqR R R

    

1 2

12 2 14
eqR R R  

  
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Example  

1R

V

 

1R 2R

2R

I

?eqR 

eqR

V

 
I

?I orMain question:
eq

VI
R





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Example  

1R

V

 

1R

2R

2R

I

?eqR  ?I orMain question:

in parallel 1 1 1
1

1 1 2,eq
R R RR
R R

 


in parallel 2 2 2
2

2 2 2,eq
R R RR
R R

 

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Example  

V

 

1,eqR 2,eqR

I

?eqR  ?I orMain question:

in series

1
1 2,eq
RR  2

2 2,eq
RR 

1 2
1 2 2, ,eq eq eq

R RR R R 
  

eqR

V

 
I

1 2

2
eq

V VI
R R R
 

 

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Example  

1R

V

 

1R 2R

2R

I

?eqR 

eqR

V

 
I

?I orMain question:
eq

VI
R



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Example  

1R

V
 

2R 4R

3R

I

?eqR  ?I orMain question:

5R

eqR

V

 
I

To find           you need to use Kirchhoff’s rules.eqR
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Kirchhoff’s rules

Chapter 31
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Kirchhoff’s rules

1R

V
 

2R 4R

3R

I

 There are two Kirchhoff’s rules

 To formulate the rules you need, at first, to choose the 
directions of current through all resistors. If you choose the 
wrong direction, then after calculation the corresponding 
current will be negative.  

5R
1I

2I 5I

3I

4I

I
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Junction Rule

 The first Kirchhoff’s rule – Junction Rule:
 The sum of the currents entering any junction must equal 
the sum of the currents leaving that junction

- A statement of Conservation of Charge  

in outI I 
1 2 3I I I 

In general, the number of times the 
junction rule can be used is one fewer than 
the number of junction points in the circuit
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Junction Rule

1R

V
 

2R 4R

3R

I

 The first Kirchhoff’s rule – Junction Rule:

 In general, the number of times the junction rule can be used is one 
fewer than the number of junction points in the circuit

5R
1I

2I 5I

3I

4I

I

in outI I 

a

b

c
d

 There are 4 junctions: a, b, c, d. 
We can write the Junction Rule for any three of them

1 2I I I 

1 5 3I I I 

(a)

(b)

2 4 5I I I (c)
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Loop Rule

 The second Kirchhoff’s rule – Loop Rule:
 The sum of the potential differences across all the 
elements around any closed circuit loop must be zero

- A statement of Conservation of Energy
0

closed loop
V 

Traveling around the loop from a to b
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Loop Rule

 The second Kirchhoff’s rule – Loop Rule:

0
closed loop

V 

In general, the number of times the Loop Rule can be used is one 
fewer than the number of possible loops in the circuit
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Loop Rule

 The second Kirchhoff’s rule – Loop Rule: 0
closed loop

V 

1R

V
 

2R 4R

3R

I

5R
1I

2I 5I

3I

4I

I

1 2

3

4

There are 4 loops. 

We need to write the Loop 
Rule for 3 loops

Loop 1:

1 1 5 5 2 2 0I R I R I R   

Loop 2:

3 3 5 5 4 4 0I R I R I R   
Loop 3:

2 2 4 4 0V I R I R   
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Kirchhoff’s Rules

1R

V
 

2R 4R

3R

I

Junction Rule

 Loop Rule

5R
1I

2I 5I

3I

4I

I

in outI I 

1 2I I I 

1 5 3I I I 

2 4 5I I I 

0
closed loop

V 

1 1 5 5 2 2 0I R I R I R   

3 3 5 5 4 4 0I R I R I R   

2 2 4 4 0V I R I R   We have 6 equations and 6 unknown currents.

eq
VR
I



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Kirchhoff’s Rules

1R

 1V
 

2R 4R

3R

I

Junction Rule

 Loop Rule

5R
1I

2I
5I

3I

4I

I

in outI I  1 2I I I 

1 5 3I I I 

2 4 5I I I 
0

closed loop
V 

     1 1 5 5 2 2 2 0I R I R I R V

3 3 5 5 4 4 0I R I R I R   

   1 2 2 4 4 0V I R I R

We have 6 equations and 6 unknown currents.

 2V 
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Example 1

1R

V

 

2R

3R

I

3I

2I

I

eqR

V

 I I

 

2 3

1
2 3

eq
R RR R
R R




eq

VI
R
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Example 1

1R

 1V
 

2R

3R

I

3I

2I

I

 

2 3

1
2 3

eq
R RR R
R R




eq

VI
R

 2 3I I I

2 2 3 3I R I R  3
2 3

2

RI I
R

 
  

 
3

3
2

1 RI I
R 


2

3
2 3

IRI
R R




3
2

2 3

IRI
R R
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Example 1: solution based on Kirchhoff’s Rules

1R

V

 

2R

3R

I

3I

2I

I

 2 3I I I

  3 3 2 2 0I R I R

   2 2 1 0V I R IR

 3
2 3

2

RI I
R 


2

3
2 3

IRI
R R 


3

2
2 3

IRI
R R

   


3
2 1

2 3

0IRV R IR
R R

 
 



3 2

1
2 3

eq

V VI R R RR
R R
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Example 2

1R

 1V
 

2R

3R

I

3I

2I

I

 2 3I I I

  3 3 2 2 0I R I R

     1 2 2 2 1 0V V I R IR

 2V 
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Example 3

1R

 1V
 

2R

3R

I

3I

2I

I

 2 3I I I

  3 3 2 2 0I R I R

    1 2 2 2 1 0V V I R IR

 2V 


