Chapter 31

Fundamentals of Circuits

Capacitors in Series

(a)
©2004 Thomson - Brooks/Cole

$\Delta V=\Delta V_{1}+\Delta V_{2}$

Conductor in Electric Field

Conductor in Electric Field

Electric Current

$>$ Electric current is the rate of flow of charge through some region of space

- The SI unit of current is the ampere (A), $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$
- Assume charges are moving perpendicular to a surface of area A
- If ΔQ is the amount of charge that passes through A in time Δt, then the average current is

©2004 Thomson - Brooks/Cole

$$
I_{a v}=\frac{\Delta Q}{\Delta t}
$$

Chapter 28 Chapter 31

Ohm's Law

Current Density

Current density is defined as the current per unit area

$$
j=\frac{I}{A}
$$

This expression is valid only if the current density is uniform and A is perpendicular to the direction of the current
j has SI units of $\mathrm{A} / \mathrm{m}^{2}$

Ohm's Law

Ohm's Law:
Current density is proportional to electric field

$$
j=\sigma E
$$

The constant of proportionality, σ, is called the conductivity of the conductor.

The conductivity depends only on the material of conductor.

Simplified model of electron motion in conductor gives

$$
\sigma=\frac{n \tau q^{2}}{m}
$$

τ - is the material dependent characteristic of conductor.

Ohm's Law

$$
\boldsymbol{j}=\sigma E
$$

- Ohm's law states that for many materials, the ratio of the current density to the electric field is a constant σ that is independent of the electric field producing the current
- Most metals, but not all, obey Ohm's law
- Materials that obey Ohm's law are said to be ohmic
- Materials that do not obey Ohm's law are said to be nonohmic
- Ohm's law is not a fundamental law of nature
- Ohm's law is an empirical relationship valid only for certain materials

Ohm's Law

Voltage across the conductor (potential difference between points A and B)

$$
\Delta V=V_{B}-V_{A}=E I
$$

where electric field is the same along the conductor. Then

$$
\begin{gathered}
E=\frac{\Delta V}{l} \\
j=\sigma E \\
E=\frac{\Delta V}{l}=\frac{1}{\sigma} j=\frac{I}{\sigma A}
\end{gathered}
$$

Another form of the Ohm's Law $\longrightarrow \Delta V=\frac{I}{\sigma A} I=R I$

Ohm's Law: Resistance

> The voltage applied across the ends of the conductor is proportional to the current through the conductor > The constant of proportionality is
 called the resistance of the conductor

$$
\Delta V=\underbrace{}_{\text {resistance }}
$$

SI units of resistance are ohms (Ω) $1 \Omega=1 \mathrm{~V} / \mathrm{A}$

Ohm's Law: Resistance

$$
\begin{aligned}
& \Delta V=R I \\
& \quad R=\frac{I}{\sigma A} \\
& O r
\end{aligned}
$$

$$
R=\frac{\rho l}{A}
$$

where $\rho=1 / \sigma$ is the resistivity the inverse of the conductivity

Resistivity has SI units of ohm-meters ($\Omega \mathbf{m}$)

Resistance: Example

$$
R=\rho \frac{I}{A}
$$

The same amount of material has been used to fabricate the wire with uniform cross-section and length I/3. What is the resistance of the wire?

$$
R_{1}=\rho \frac{I_{1}}{A_{1}}
$$

$I_{1} A_{1}=I A$

$$
I_{1}=I / 3
$$

$$
\begin{gathered}
A_{1}=\frac{I A}{I_{1}}=3 A \\
R_{1}=\rho \frac{I_{1}}{A_{1}}=\rho \frac{I / 3}{3 A}=\rho \frac{I}{9 A}=\frac{R}{9}
\end{gathered}
$$

Ohm's Law

$$
j=\sigma E \quad \Delta V=R I
$$

- Materials that obey Ohm's law are said to be ohmic
- Materials that do not obey Ohm's law are said to be nonohmic

An ohmic device

> The resistance is constant over a wide range of voltages
$>$ The relationship between current and voltage is linear
$>$ The slope is related to the resistance

Ohm's Law

$$
j=\sigma E \quad \Delta V=R I
$$

- Materials that obey Ohm's law are said to be ohmic
- Materials that do not obey Ohm's law are said to be nonohmic

Nonohmic materials
> The current-voltage relationship
is nonlinear

Chapter 31

Electric Power

$>$ As a charge moves from a to b, the electric potential energy of the system increases by $\boldsymbol{Q} \Delta \boldsymbol{V}$
$>$ The chemical energy in the battery must decrease by the same amount
> As the charge moves through the resistor (c to d), the system loses this electric potential energy during collisions of the electrons with the atoms of the resistor
$>$ This energy is transformed into internal energy in the resistor

$$
I=\frac{\Delta V}{R}
$$

Electrical Power

$>$ The power is the rate at which the energy is delivered to the resistor

$$
I=\frac{\Delta V}{R}
$$

$\Delta \boldsymbol{U}=\boldsymbol{Q} \Delta \boldsymbol{V} \quad$ - the energy delivered to the resistor when charge Q moves from \mathbf{a} to \mathbf{b} (or from c to d)

The power:

$$
\begin{aligned}
P & =\frac{\Delta U}{\Delta t}=\frac{Q}{\Delta t} \Delta V=I \Delta V \\
P & =I \Delta V=I^{2} R=\frac{\Delta V^{2}}{R}
\end{aligned}
$$

Units: I is in A, R is in Ω, V is in V, and P is in W

Electrical Power

$$
I=\frac{\Delta V}{R}
$$

The power: $P=I \Delta V=I^{2} R=\frac{\Delta V^{2}}{R}$

$$
P=\frac{\Delta V^{2}}{R(T)} \quad \begin{aligned}
& \text { Will increase the } \\
& \text { temperature of conductor }
\end{aligned}
$$

Electromagnetic waves (light), $\boldsymbol{P}_{\text {EMW }}(T)$

$P=\frac{\Delta V^{2}}{\boldsymbol{R}(T)}$
Heat transfer to air $P_{\text {air }}(T)=\alpha\left(T-T_{0}\right)$

$$
P=\frac{\Delta V^{2}}{R(T)}=P_{E M W}(T)+\alpha\left(T-T_{0}\right)
$$

Power: Example

A 1000-W heating coil designed to operate from 110 V is made of Nichrome wire 0.5 mm in diameter. Assuming that the resistivity of the Nichrome remains constant at its 20 C value, find the length of wire used.

$$
\begin{gathered}
\rho_{N}=1.5 \cdot 10^{-6} \Omega \cdot m \quad R=\rho_{N} \frac{I}{A} \quad A=\pi \frac{d^{2}}{4} \\
P=I \Delta V=I^{2} R=\frac{U^{2}}{R} \quad \\
R=\frac{U^{2}}{P} \\
I=A \frac{R}{\rho_{N}}=A \frac{U^{2}}{\rho_{N} P}=\pi \frac{d^{2}}{4} \frac{U^{2}}{\rho_{N} P}=\frac{3.14 \cdot 0.5^{2} \cdot 10^{-6} \cdot 110^{2}}{4 \cdot 1.5 \cdot 10^{-6} \cdot 1000} m=1.58 m
\end{gathered}
$$

Chapter 31

Direct Current

Direct Current

- When the current in a circuit has a constant magnitude and direction, the current is called direct current
- Because the potential difference between the terminals of a battery is constant, the battery produces direct current

- The battery is known as a source of emf (electromotive force)

Resistors in Series

For a series combination of resistors, the currents are the same in all the resistors because the amount of charge that passes through one resistor must also pass through the other resistors in the same time interval

Ohm's law: $\quad V_{c}-V_{b}=I R_{2}$

$$
\begin{gathered}
V_{b}-V_{a}=I R_{1} \\
V_{c}-V_{a}=V_{c}-V_{b}+V_{b}-V_{a}= \\
=I R_{2}+I R_{1}=I\left(R_{1}+R_{2}\right) \\
R_{e q}=R_{1}+R_{2}
\end{gathered}
$$

(b)

The equivalent resistance has the same effect on the circuit as the original combination of resistors

Resistors in Series

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

- $R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots$
- The equivalent resistance of a series combination of resistors is the algebraic sum of the individual resistances and is always greater than any individual resistance

Resistors in Parallel

$>$ The potential difference across each resistor is the same because each is connected directly across the battery terminals $>$ The current, I, that enters a point must be equal to the total current leaving that point

$$
I=I_{1}+I_{2}
$$

- Consequence of Conservation of Charge

Ohm's law:

$$
\begin{aligned}
& V_{b}-V_{a}=\Delta V=I_{1} R_{1} \\
& V_{b}-V_{a}=\Delta V=I_{2} R_{2}
\end{aligned}
$$

Conservation of Charge: $\quad I=I_{1}+I_{2}$

$$
I=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}=\Delta V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{\Delta V}{R_{e q}}
$$

(b)

Resistors in Parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

> Equivalent Resistance

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

- The equivalent is always less than the smallest resistor in the group
$>$ In parallel, each device operates independently of the others so that if one is switched off, the others remain on
$>$ In parallel, all of the devices operate on the same voltage
> The current takes all the paths
- The lower resistance will have higher currents
- Even very high resistances will have some currents

Example

$$
R_{e q}=R_{1}+R_{2}=
$$

(c)

Example
Main question: $R_{e q}=$? or $I=$?

Example

Main question: $R_{e q}=$? or $I=$?

Example

Main question: $R_{e q}=$? or $\quad l=$?

$$
R_{e q, 1}=\frac{R_{1}}{2} \quad R_{e q, 2}=\frac{R_{2}}{2}
$$

Example

Main question: $R_{e q}=$? or $\quad l=$?

Example

Main question: $R_{e q}=$? or $\quad I=$?

To find $R_{e q}$ you need to use Kirchhoff's rules.

Chapter 31

Kirchhoff's rules

Kirchhoff's rules

$>$ There are two Kirchhoff's rules
$>$ To formulate the rules you need, at first, to choose the directions of current through all resistors. If you choose the wrong direction, then after calculation the corresponding current will be negative.

Junction Rule

> The first Kirchhoff's rule - Junction Rule:
$>$ The sum of the currents entering any junction must equal the sum of the currents leaving that junction

- A statement of Conservation of Charge

$$
\begin{gathered}
\sum I_{\text {in }}=\sum I_{\text {out }} \\
I_{1}=I_{2}+I_{3}
\end{gathered}
$$

(a)

In general, the number of times the junction rule can be used is one fewer than the number of junction points in the circuit

Junction Rule

$>$ The first Kirchhoff's rule - Junction Rule: $\sum I_{\text {in }}=\sum I_{\text {out }}$
$>$ In general, the number of times the junction rule can be used is one fewer than the number of junction points in the circuit
> There are 4 junctions: a, b, c, d.
$>$ We can write the Junction Rule for any three of them

(a) $I=I_{1}+I_{2}$
(b) $I_{1}+I_{5}=I_{3}$
(c) $I_{2}=I_{4}+I_{5}$

Loop Rule

$>$ The second Kirchhoff's rule - Loop Rule:
> The sum of the potential differences across all the elements around any closed circuit loop must be zero

- A statement of Conservation of Energy

$$
\sum_{\text {closed loop }} \Delta V=0
$$

Traveling around the loop from \boldsymbol{a} to \boldsymbol{b}

(c)

(d)

Loop Rule

> The second Kirchhoff's rule - Loop Rule:
In general, the number of times the Loop Rule can be used is one fewer than the number of possible loops in the circuit

$$
\sum_{\text {closed loop }} \Delta V=0
$$

Loop Rule

> The second Kirchhoff's rule - Loop Rule:

$$
\sum_{\text {closescloop }} \Delta V=0
$$

(a) $\stackrel{\rightharpoonup}{\bullet} \stackrel{I}{\underset{\Delta V}{M}}$

(d) $\underset{a}{\bullet} \underset{\Delta V=V_{b}-V_{a}=-\boldsymbol{\varepsilon}}{\substack{\boldsymbol{b}}}$

There are 4 loops.
We need to write the Loop Rule for 3 loops
Loop 1:

$$
-l_{1} R_{1}+I_{5} R_{5}+I_{2} R_{2}=0
$$

Loop 2:

$$
-I_{3} R_{3}-I_{5} R_{5}+I_{4} R_{4}=0
$$

Loop 3:

$$
\Delta V-I_{2} R_{2}-I_{4} R_{4}=0
$$

Kirchhoff's Rules

$$
\begin{array}{ll}
\text { Junction Rule } & \sum l_{\text {in }}=\sum I_{\text {out }} \\
>\text { Loop Rule } & \sum_{\text {dosestiono }} \Delta V=0
\end{array}
$$

$$
\begin{gathered}
I=I_{1}+I_{2} \\
I_{1}+I_{5}=I_{3} \\
I_{2}=I_{4}+I_{5} \\
-I_{1} R_{1}+I_{5} R_{5}+I_{2} R_{2}=0 \\
-I_{3} R_{3}-I_{5} R_{5}+I_{4} R_{4}=0
\end{gathered}
$$

We have 6 equations and 6 unknown currents. $\quad \Delta V-I_{2} R_{2}-I_{4} R_{4}=0$

$$
R_{e q}=\frac{\Delta V}{I}
$$

Kirchhoff's Rules

$$
\begin{array}{cc}
\text { Junction Rule } & \sum l_{\text {in }}=\sum l_{\text {out }} \\
>\text { Loop Rule } & \sum_{\text {dosescloop }} \Delta V=0
\end{array}
$$

$$
\begin{gathered}
I=I_{1}+I_{2} \\
I_{1}+I_{5}=I_{3} \\
I_{2}=I_{4}+I_{5} \\
-I_{1} R_{1}+I_{5} R_{5}+I_{2} R_{2}+\Delta V_{2}=0 \\
-I_{3} R_{3}-I_{5} R_{5}+I_{4} R_{4}=0 \\
\Delta V_{1}-I_{2} R_{2}-I_{4} R_{4}=0
\end{gathered}
$$

We have 6 equations and 6 unknown currents.

Example 1

$$
\begin{aligned}
R_{e q} & =R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}} \\
I & =\frac{\Delta V}{R_{e q}}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& R_{e q}=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}} \\
& I=\frac{\Delta V}{R_{e q}}
\end{aligned}
$$

$$
I=I_{2}+I_{3}
$$

$$
I_{2} R_{2}=I_{3} R_{3}
$$

$$
I_{2}=I_{3} \frac{R_{3}}{R_{2}}
$$

$$
I=I_{3}\left(1+\frac{R_{3}}{R_{2}}\right)
$$

$$
I_{3}=\frac{I R_{2}}{R_{2}+R_{3}}
$$

$$
I_{2}=\frac{I R_{3}}{R_{2}+R_{3}}
$$

Example 1: solution based on Kirchhoff's Rules

Example 2

$$
\begin{gathered}
I=I_{2}+I_{3} \\
-I_{3} R_{3}+I_{2} R_{2}=0 \\
\Delta V_{1}+\Delta V_{2}-I_{2} R_{2}-I R_{1}=0
\end{gathered}
$$

Example 3

$$
\begin{gathered}
I=I_{2}+I_{3} \\
-I_{3} R_{3}+I_{2} R_{2}=0 \\
\Delta V_{1}-\Delta V_{2}-I_{2} R_{2}-I R_{1}=0
\end{gathered}
$$

