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Gauss’s Law

Chapter 28
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Electric Flux

Definition:
• Electric flux is the product of the 

magnitude of the electric field and the 
surface area, A, perpendicular to the 
field

• ΦE = EA
• The field lines may make some angle θ

with the perpendicular to the surface
• Then ΦE = EA cos θ

E


E EA 
E


cosE EA  

normal



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Electric Flux: Surface as a Vector

Vector, corresponding to a Flat Surface of Area A, is determined 
by the following rules:

 the vector is orthogonal to the surface 

 the magnitude of the vector is equal to the area A

90o

A


normal

Area = A

The first rule 

 the vector is orthogonal to the surface

does not determine the direction of      . 
There are still two possibilities:

A


90o

A


90o

A


or

You can choose any of them 
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Electric Flux: Surface as a Vector

If we consider more complicated surface then the directions of 
vectors  should be adjusted, so the direction of vector is a smooth 
function of the surface point

correct

or

wrong

or

1A


2A


3A

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Electric Flux

Definition:
• Electric flux is the scalar product of 

electric field and the vector
• E



cos 0E EA EA    






A


or
E


cos 0E EA EA     






A


EA 


A

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Electric Flux

1A


2A


1 2E   
1

2


1area A

2area A

E




2 2 2 2cos(90 ) sinoEA EA EA     


1 1 1 sinEA EA   


1 2sin sinE EA EA   

1A


2A



E




if

then 1 2cos cosE EA EA    

90o 

1A


2A


E


2 0 

and        are
orthogonal 

1 sinE EA  

2A


E


flux is positive 

flux is negative 
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Electric Flux

• In the more general case, look 
at a small flat area element

• In general, this becomes

• The surface integral means the 
integral must be evaluated over 
the surface in question

• The units of electric flux will be 
N.m2/C2

cosE i i i i iE A θ E A     
 

0
surface

lim
i

E i iA
E A E dA

 
      

   
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Electric Flux: Closed Surface

0
surface

lim
i

E i iA
E A E dA

 
      

   

The vectors         point in different 
directions

 At each point, they are 
perpendicular to the surface

 By convention, they point 
outward

iA

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Electric Flux: Closed Surface

E


Closed surface

1
2

3

4

1

3

5

1A
 2A





3A


4A


1 2 3 4 5 6E        6

2

4

E


E


is orthogonal to       ,      ,        , and 3A


4A


5A


6A


Then 
3 3 0EA  


4 4 0EA  



5 5 0EA  


6 6 0EA  


1 2E   

1 1 1 1cos(90 ) sinoEA EA EA      


90o 

2 2 2EA EA  


2 1( sin )E E A A   

but 1A
2A


2 1 sinA A  Then 0E 

(no charges inside closed surface)
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Electric Flux: Closed Surface

• A positive point charge, q, is 
located at the center of a sphere 
of radius r

• The magnitude of the electric 
field everywhere on the surface 
of the sphere is 
E = keq / r2

• Electric field is perpendicular to 
the surface at every point, so    

has the same direction as 
at every point.     

Spherical 
surface 

E


A

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Electric Flux: Closed Surface

has the same direction as        at every point.     

Spherical 
surface 

E


A


2e
qE k
r



Then 

2 2
0 2

0

4 4

4

i i i
i i

e

e

E dA E dA

qEA E r r k
r

qk q

 




   

   

 

 


does not depend on r

Gauss’s Law

ONLY BECAUSE
2

1E
r


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Electric Flux: Closed Surface

and      have opposite directions at every point.     

Spherical 
surface 

E


A


2

| |
e

qE k
r



Then 

2 2
0 2

0

| |4 4

4 | |

i i i
i i

e

e

E dA E dA

qEA E r r k
r

qk q

 




    

      

  

 


does not depend on r



Gauss’s Law

ONLY BECAUSE
2

1E
r


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Gauss’s Law

 The net flux through any closed surface
surrounding a point charge, q, is given by q/εo
and is independent of the shape of that 
surface

 The net electric flux through a closed surface 
that surrounds no charge is zero

q q

0

q


 
0

q


 

iA


E


E


iA

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Gauss’s Law

 Gauss’s law states

 qin is the net charge inside the surface

 E is the total electric field and may have contributions 
from charges both inside and outside of the surface

q q

0

q


 
0

q


 

iA


E


E


iA


in
E

o

qE dA
ε

   
 

�
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Gauss’s Law

 Gauss’s law states

 qin is the net charge inside the surface

 E is the total electric field and may have contributions from 
charges both inside and outside of the surface

1q 1 2 3 4

0

q q q q


  
 

in
E

o

qE dA
ε

   
 

�

2q

3q

4q

5q

7q6q
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Gauss’s Law

 Gauss’s law states

 qin is the net charge inside the surface

 E is the total electric field and may have contributions 
from charges both inside and outside of the surface

1q

0 

in
E

o

qE dA
ε

   
 

�

2q

3q
4q

5q

7q6q
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Gauss’s Law

 Gauss’s law states

 qin is the net charge inside the surface

 E is the total electric field and may have contributions 
from charges both inside and outside of the surface

q

0 

in
E

o

qE dA
ε

   
 

�

2q
q

4q

5q

7q6q
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Gauss’s Law: Problem

What is the flux through surface 1

1

1 2 0  

E


1A


2A


3A


0A


2 0 0EA EA   


2

1 2 0EA   
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Gauss’s Law: Applications

Chapter 28
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Gauss’s Law: Applications

 Although Gauss’s law can, in theory, be solved to find 
E for any charge configuration, in practice it is limited to 
symmetric situations
 To use Gauss’s law, you want to choose a Gaussian 
surface over which the surface integral can be simplified
and the electric field determined
 Take advantage of symmetry
 Remember, the gaussian surface is a surface you 
choose, it does not have to coincide with a real surface

1q1 2 3 4

0

q q q q


  
 

in

o

qE dA
ε

   
 

�

2q

3q

4q

5q

6q
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SYMMETRY:

Gauss’s Law: Point Charge


q

E


E


- direction - along the radius

E


- depends only on radius, r

2e
qE k
r



0

q


  - Gauss’s Law

2
0 4i i i

i i
E dA E dA EA E r     


- definition of the Flux

Then 2

0

4q r E




Gaussian Surface – Sphere

Only in this case the magnitude of 
electric field is constant on the 
Gaussian surface and the flux can be 
easily evaluated
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Gauss’s Law: Applications in

o

qE dA
ε

   
 

�

• Try to choose a surface that satisfies one or more of these conditions:
– The value of the electric field can be argued from symmetry to be 

constant over the surface
– The dot product of E.dA can be expressed as a simple algebraic 

product EdA because E and dA are parallel
– The dot product is 0 because E and dA are perpendicular
– The field can be argued to be zero over the surface

correct Gaussian surface 



wrong Gaussian surface 
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Spherically Symmetric Charge Distribution 

Gauss’s Law: Applications 

The total charge is Q 

• Select a sphere as the 
gaussian surface

• For r >a

2 in

2 2

4

4

E
o o

e
o

q QE dA EdA πr E
ε ε

Q QE k
πε r r

      

 

 
 

� �

SYMMETRY:

E


- direction - along the radius

E


- depends only on radius, r

E


A


The electric field is the same as 
for the point charge Q
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Spherically Symmetric Charge Distribution 

Gauss’s Law: Applications 

2 24 e
o

Q QE k
πε r r

  The electric field is the same as 
for the point charge Q !!!!!

Q

Qa 
For r > a


For r > a
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Spherically Symmetric Charge Distribution 

Gauss’s Law: Applications 

SYMMETRY:

E


- direction - along the radius

E


- depends only on radius, r

E


A


• Select a sphere as the 
gaussian surface, r < a

3
3

3
3

4
4 3
3

in
Q rq r Q Q

aa



  

2 in

3
in

2 3 2 3

4

1
4

E
o

e e
o

qE dA EdA πr E
ε

q Qr QE k k r
πε r a r a

     

  

 
 

� �



27

Spherically Symmetric Charge Distribution

Gauss’s Law: Applications 

• Inside the sphere, E varies 
linearly with r
E → 0 as r → 0

• The field outside the sphere 
is equivalent to that of a point 
charge located at the center 
of the sphere
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Field due to a thin spherical shell

Gauss’s Law: Applications 

• Use spheres as the gaussian surfaces
• When r > a, the charge inside the surface is Q and 

E = keQ / r2

• When r < a, the charge inside the surface is 0 and E = 0
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Field due to a thin spherical shell

Gauss’s Law: Applications 

• When r < a, the charge inside the surface is 0 and E = 0

1r

1A

2A

2r

1 1q A   2 2q A  

the same 
solid angle

2
1 1A r   2

2 2A r  

1E


2E
 2

1 1 1
1 2 2 2

1 1 1
e e e e

q A r
E k k k k

r r r
 


  

     

2
2 2 2

2 2 2 2
2 2 2

e e e e
q A r

E k k k k
r r r

 


  
     

1 2E E  

1 2 0E E   
 

2

1E
r

Only because in Coulomb law
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Field from a line of charge

Gauss’s Law: Applications 

• Select a cylindrical Gaussian surface 
– The cylinder has a radius of r and 

a length of ℓ
• Symmetry:

E is constant in magnitude (depends 
only on radius r) and perpendicular 
to the surface at every point on the 
curved part of the surface

The end view
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Field from a line of charge

Gauss’s Law: Applications 

The end view

dA
 The flux through this surface is 0

The flux through this surface:

  in2E
o

qE dA EdA E πr
ε

      
 

� �

  

 


2

2
2

o

e
o

λE πr
ε

λ λE k
πεr r

 inq λ
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Field due to a plane of charge 

Gauss’s Law: Applications 

• Symmetry:
E must be perpendicular to the plane 
and must have the same magnitude
at all points equidistant from the 
plane

• Choose a small cylinder whose axis 
is perpendicular to the plane for the 
gaussian surface

The flux through this surface is 0

dA

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Field due to a plane of charge 

Gauss’s Law: Applications 

The flux through this surface is 0

dA
5A



6A


3A


4A


1A


2A


h

h

1E


2E


1 1 2 2 2E A E A EA EA EA     
  

1 2E E E  1 2A A A 

0 0

inq A
 

  
0

2 AEA 



02

E 


 does not depend on h
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Gauss’s Law: Applications 

02
E 




2 eE k
r



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Gauss’s Law: Applications 

  

3

3 3

4
43
3e e e

πa ρQE k r k r πk ρr
a a

 34
3

Q πa ρ


 4

3 eE πk ρr
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R
r

a

Find electric field inside the hole 

Example 
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R
r

a 

R

 
r


R




 

1
4
3 eE πk ρr


 4

3 eE πk ρr

1r


2r


 
 

2
4
3 eE πk ρr


2r


1r


a

     
     

1 2 1 2
4 4 4 4( )
3 3 3 3e e e eE πk ρr πk ρr πk ρr r πk ρa const
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Example 

1 3e
QE k r
a


 

The sphere has a charge Q and radius a. The point 
charge –Q/8 is placed at the center of the sphere. 
Find all points where electric field is zero.

r  
 

2 28e
QE k
r

r1E


2E


1 2 0E E 
 

3 28e e
Q Qk r k
a r



3
3

8
ar  2

ar 
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Conductors in Electric Field

Chapter 28
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Electric Charges: Conductors and Isolators

 Electrical conductors are materials in which 
some of the electrons are free electrons

 These electrons can move relatively freely 
through the material
 Examples of good conductors include copper, 
aluminum and silver

 Electrical insulators are materials in which all 
of the electrons are bound to atoms

 These electrons can not move relatively freely 
through the material
 Examples of good insulators include glass, rubber 
and wood

 Semiconductors are somewhere between 
insulators and conductors
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Electrostatic Equilibrium

Definition:
when there is no net motion of charge 
within a conductor, the conductor is 
said to be in electrostatic equilibrium

Because the electrons can move freely through the 
material
 no motion means that there are no electric forces
 no electric forces means that the electric field 
inside the conductor is 0

If electric field inside the conductor is not 0,            then 
there is an electric force              and, from the second 
Newton’s law, there is a motion of free electrons.

0E 


F qE
 

F qE
 
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Conductor in Electrostatic Equilibrium

• The electric field is zero everywhere inside the 
conductor

• Before the external field is applied, 
free electrons are distributed 
throughout the conductor

• When the external field is applied, the 
electrons redistribute until the 
magnitude of the internal field equals 
the magnitude of the external field

• There is a net field of zero inside the 
conductor
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Conductor in Electrostatic Equilibrium

• If an isolated conductor carries a charge, the charge 
resides on its surface

Electric filed is 0,

so the net flux through 
Gaussian surface is 0

in

o

qE dA
ε

   
 

�

Then in 0q 
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Conductor in Electrostatic Equilibrium

• The electric field just outside a charged conductor is 
perpendicular to the surface and has a magnitude of σ/εo

• Choose a cylinder as the gaussian surface
• The field must be perpendicular to the surface

– If there were a parallel component to E, 
charges would experience a force and 
accelerate along the surface and it would 
not be in equilibrium

• The net flux through the gaussian surface is 
through only the flat face outside the 
conductor
– The field here is perpendicular to the 

surface
• Gauss’s law:    E

o o

σA σEA and E
ε ε
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Conductor in Electrostatic Equilibrium


o

σE
ε

0E 

 σ

 σ

 σ

 σ

 σ
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Conductor in Electrostatic Equilibrium: Example

Find electric field if the conductor spherical shell has zero charge 

0q 
1r

2r

conductor

0E 

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Conductor in Electrostatic Equilibrium: Example

Find electric field if the conductor spherical shell has zero charge 

0E 


surface charge, total charge is  –q<0

0q 

1r

2r





 








surface charge, total charge is  q>0

This is because the total charge of the conductor is 0!!!












 



The total charge 
inside this Gaussian 
surface is 0, so the 
electric field is 0
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Conductor in Electrostatic Equilibrium: Example

Find electric field if the conductor spherical shell has zero charge 

0E 


total charge is  –q<0

0q 

1r

2r





 








surface charge, total charge is  q>0

This is because the total charge of the conductor is 0!!!












 



The total charge 
inside this Gaussian 
surface is q, so the 
electric field is

2e
qE k
r


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Conductor in Electrostatic Equilibrium: Example

Find electric field if the conductor spherical shell has zero charge 

0E 


total charge is  –q<0

0q 

1r

2r





 








surface charge, total charge is  q>0

This is because the total charge of the conductor is 0!!!












 



2e
qE k
r



2e
qE k
r


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Conductor in Electrostatic Equilibrium: Example

Find electric field if the charge of the conductor spherical shell is Q

0E 


total charge is  –q<0

0q 

1r

2r





 








surface charge, total charge is  Q+q>0

This is because the total charge of the conductor is Q!!!












 



2e
Q qE k

r




2e
qE k
r




