Chapter 33

Alternating Current Circuits

Capacitor
Resistor

Inductance

$>$ The AC power source provides an alternative voltage, $\Delta v(\mathrm{t})$
> Notation

- Lower case symbols will indicate instantaneous values
- Capital letters will indicate fixed values
- The output of an AC power source is sinusoidal

$$
\Delta v=\Delta V_{\max } \sin \omega t
$$

- Δv is the instantaneous voltage
- $\Delta V_{\max }$ is the maximum output voltage of the source
- ω is the angular frequency of the AC voltage

AC voltage

$$
\Delta v=\Delta V_{\max } \cos (\omega t+\varphi)
$$

- The angular frequency is

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

- f is the frequency of the source
- T is the period of the source
- The voltage is positive during one half of
 the cycle and negative during the other half
- The current in any circuit driven by an AC source is an alternating current that varies sinusoidally with time
- Commercial electric power plants in the US use a frequency of 60 Hz
- Consider a circuit consisting of an AC source and a resistor
- The AC source is symbolized by

- $\Delta v=\Delta v_{R}=\Delta V_{\max } \sin \omega t$
- Δv_{R} is the instantaneous voltage

$$
\Delta v=\Delta V_{\max } \sin \omega t
$$ across the resistor

- The instantaneous current in the resistor is
$i_{R}=\frac{\Delta V_{R}}{R}=\frac{\Delta V_{\max }}{R} \sin \omega t=I_{\max } \sin \omega t$

$$
\begin{aligned}
& \Delta v=\Delta v_{R}=\Delta V_{\max } \sin (\omega t) \\
& i_{R}=\frac{\Delta v_{R}}{R}=\frac{\Delta V_{\max }}{R} \sin \omega t=I_{\max } \sin \omega t
\end{aligned}
$$

(a)
$>$ The current and the voltage are in phase
$>$ Resistors behave essentially the same way in both DC and AC circuits

Resistor in AC circuit: Phasor diagram

$$
\begin{aligned}
& \Delta v=\Delta v_{R}=\Delta V_{\max } \sin (\omega t) \\
& i_{R}=\frac{\Delta v_{R}}{R}=\frac{\Delta V_{\max }}{R} \sin \omega t=I_{\max } \sin \omega t
\end{aligned}
$$

$>$ A phasor is a vector whose length is proportional to the maximum value of the variable it represents
$>$ The vector rotates at an angular speed equal to the angular frequency associated with the variable
$>$ The projection of the phasor onto the vertical axis represents the instantaneous value of the quantity it represents

rms current and voltage

$$
i_{R}=I_{\max } \sin \omega t
$$

- The average current in one cycle is zero
- rms stands for root mean square

$$
\begin{aligned}
I_{m s} & =\left(\frac{1}{T} \int_{0}^{T} \int_{R}^{2} d t\right)^{1 / 2}=\left(\frac{1}{T} I_{\text {max }}^{2} \int_{0}^{T} \sin ^{2}(\omega t) d t\right)^{1 / 2} \\
& =\left(\frac{1}{2 \pi} I_{\max }^{2} \int_{0}^{2 \pi} \sin ^{2}(T) d T\right)^{1 / 2}=\frac{I_{\text {max }}}{\sqrt{2}}=0.707 I_{\text {max }}
\end{aligned}
$$

(a)

- Alternating voltages can also be discussed in terms of rms values

$$
\Delta V_{r m s}=\frac{\Delta V_{\max }}{\sqrt{2}}=0.707 \Delta V_{\max }
$$

- The rate at which electrical energy is dissipated in the circuit is given by

$$
P=i^{2} R
$$

- where i is the instantaneous current
- The average power delivered to a resistor that carries an alternating current is

$$
P_{a v}=I_{r m s}^{2} R
$$

Inductors in AC circuit

$$
\begin{aligned}
& \Delta v+\Delta v_{L}=0, \text { or } \\
& \Delta v-L \frac{d i}{d t}=0 \\
& \Delta v=L \frac{d i}{d t}=\Delta V_{\max } \sin \omega t
\end{aligned}
$$

$$
\begin{aligned}
& \text { eee } \\
& L
\end{aligned}
$$

$$
i_{L}=\frac{\Delta V_{\max }}{L} \int \sin \omega t d t=-\frac{\Delta V_{\max }}{\omega L} \cos \omega t
$$

$$
i_{L}=\frac{\Delta V_{\max }}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right) \quad I_{\max }=\frac{\Delta V_{\max }}{\omega L}
$$

This shows that the instantaneous current i_{L} in the inductor and the instantaneous voltage Δv_{L} across the inductor are out of phase by

$$
(\pi / 2) \mathrm{rad}=90^{\circ} .
$$

$\Delta v=\Delta V_{\text {max }} \sin \omega t$
$i_{L}=I_{\text {max }} \sin \left(\omega t-\frac{\pi}{2}\right)$
$I_{\max }=\frac{\Delta V_{\max }}{\omega L} \quad \Delta v_{L}, i_{L}$

$\Delta v=\Delta V_{\text {max }} \sin \omega t$

Inductors in AC circuit

$$
\begin{aligned}
& \Delta V=\Delta V_{\max } \sin \omega t \\
& i_{L}=I_{\max } \sin \left(\omega t-\frac{\pi}{2}\right) \quad I_{\max }=\frac{\Delta V_{\max }}{\omega L}
\end{aligned}
$$

- The phasors are at 90° with
 respect to each other
- This represents the phase difference between the current and voltage
- Specifically, the current lags behind the voltage by 90°

(b)

Inductors in AC circuit

$\Delta v=\Delta V_{\max } \sin \omega t$
$i_{L}=I_{\max } \sin \left(\omega t-\frac{\pi}{2}\right) \quad I_{\max }=\frac{\Delta V_{\max }}{\omega L}$

- The factor ωL has the same units as resistance and is related to current and voltage in the same way as resistance
- The factor is the inductive reactance and is given by:

$$
X_{L}=\omega L
$$

- As the frequency increases, the inductive reactance increases

$$
I_{\max }=\frac{\Delta V_{\max }}{X_{L}}
$$

Capacitors in AC circuit

$\Delta v+\Delta v_{c}=0 \quad$ and so
$\Delta v=\Delta v_{C}=\Delta V_{\text {max }} \sin \omega t$

- Δv_{c} is the instantaneous voltage across the capacitor
- The charge is

$$
q=C \Delta v_{C}=C \Delta V_{\max } \sin \omega t
$$

$\Delta v=\Delta V_{\text {max }} \sin \omega t$

- The instantaneous current is given by

$$
\begin{aligned}
& i_{C}=\frac{d q}{d t}=\omega C \Delta V_{\max } \cos \omega t \\
& i_{C}=\omega C \Delta V_{\max } \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

- The current is $(\pi / 2)$ rad $=90^{\circ}$ out of phase with the voltage 4

Capacitors in AC circuit

$$
\begin{aligned}
& \Delta V_{C}=\Delta V_{\max } \sin \omega t \\
& i_{C}=\omega C \Delta V_{\max } \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

(a)

Capacitors in AC circuit

$$
\begin{aligned}
& \Delta v_{C}=\Delta V_{\max } \sin \omega t \\
& i_{C}=\omega C \Delta V_{\max } \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

(a)

- The phasor diagram shows that for a sinusoidally applied voltage, the current always leads the voltage across a capacitor by 90°
- This is equivalent to saying the voltage lags the current

Capacitors in AC circuit

- The maximum current

$$
I_{\max }=\omega C \Delta V_{\max }=\frac{\Delta V_{\max }}{(1 / \omega C)}
$$

- The impeding effect of a capacitor on the current in an AC circuit is called the capacitive reactance and is given by

$$
X_{C} \equiv \frac{1}{\omega C} \quad \text { and } \quad I_{\max }=\frac{\Delta V_{\max }}{X_{c}}
$$

$\Delta V=\Delta V_{\max } \sin \omega t$
$i_{L}=I_{\text {max }} \sin \omega t$
$I_{\text {max }}=\frac{\Delta V_{\text {max }}}{R}$

$\Delta v=\Delta V_{\max } \sin \omega t$
$i_{L}=I_{\text {max }} \sin \left(\omega t-\frac{\pi}{2}\right)$
$I_{\text {max }}=\frac{\Delta V_{\text {max }}}{\omega L}=\frac{\Delta V_{\text {max }}}{X_{L}}$

$\Delta v=\Delta V_{\max } \sin \omega t$

$$
\Delta v=\Delta V_{\max } \sin \omega t
$$

$I_{\text {max }}=\frac{\Delta V_{\text {max }}}{(1 / \omega C)}=\frac{\Delta V_{\text {max }}}{X_{c}}$

$$
\Delta v_{C}=\Delta V_{\max } \sin \omega t
$$

$$
i_{c}=I_{\max } \sin \left(\omega t+\frac{\pi}{2}\right)
$$

RLC series circuit

- The instantaneous voltage would

$$
\longleftarrow \longleftarrow \Delta v_{R} \rightarrow \longleftarrow v_{L} \longrightarrow \longleftarrow \Delta v_{C} \rightarrow \mid
$$ be given by

$$
\Delta v=\Delta V_{\max } \sin \omega t
$$

- The instantaneous current would be given by

$$
i=I_{\max } \sin (\omega t-\varphi)
$$

(a)

- Since the elements are in series, the current at all points in the circuit has the same amplitude and phase
- The instantaneous voltage across the resistor is in phase with the current
- The instantaneous voltage across the inductor leads the current by 90°
- The instantaneous voltage across the capacitor lags the current by 90°

(a)
- The instantaneous voltage across each of the three circuit elements can be expressed as

$$
\begin{aligned}
& \Delta v_{R}=I_{\max } R \sin \omega t=\Delta V_{R} \sin \omega t \\
& \Delta v_{L}=I_{\max } X_{L} \sin \left(\omega t+\frac{\pi}{2}\right)=\Delta V_{L} \cos \omega t \\
& \Delta v_{C}=I_{\max } X_{C} \sin \left(\omega t-\frac{\pi}{2}\right)=-\Delta V_{C} \cos \omega t
\end{aligned}
$$

$$
\begin{aligned}
& \Delta v_{R}=I_{\max } R \sin \omega t=\Delta V_{R} \sin \omega t \\
& \Delta v_{L}=I_{\max } X_{L} \sin \left(\omega t+\frac{\pi}{2}\right)=\Delta V_{L} \cos \omega t
\end{aligned}
$$

$$
\Delta v_{C}=I_{\max } X_{C} \sin \left(\omega t-\frac{\pi}{2}\right)=-\Delta V_{C} \cos \omega t
$$

- In series, voltages add and the instantaneous voltage across all three elements would be

$$
\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
$$

- Easier to use the phasor diagrams
$i=I_{\max } \sin \omega t$
$\Delta v_{R}=I_{\max } R \sin \omega t=\Delta V_{R} \sin \omega t$
$\Delta v_{L}=I_{\max } X_{L} \sin \left(\omega t+\frac{\pi}{2}\right)=\Delta V_{L} \cos \omega t$
$\Delta v_{C}=I_{\max } X_{C} \sin \left(\omega t-\frac{\pi}{2}\right)=-\Delta V_{C} \cos \omega t$
$\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}=$
$=\Delta V_{R} \sin \omega t+\Delta V_{L} \cos \omega t-\Delta V_{C} \cos \omega t=$
$=\Delta V_{\max } \sin (\omega t+\varphi)$
Easier to use the phasor diagrams

RLC series circuit

$\left|\longleftarrow \Delta v_{R} \longrightarrow\right| \longleftarrow \Delta v_{L} \longrightarrow\left|\longleftarrow \Delta v_{C} \longrightarrow\right|$

The phasors for the individual elements:

(a) Resistor

(b) Inductor
©2004 Thomson - Brooks/Cole

- The individual phasor diagrams can be combined
- Here a single phasor $I_{\text {max }}$ is used to represent the current in each element
- In series, the current is the same in each element

RLC series circuit

$\left|\longleftarrow \Delta v_{R} \rightarrow\right| \longleftarrow \Delta v_{L} \rightarrow \mid \longleftarrow \Delta v_{C} \rightarrow 1$

(a)
$\Delta V_{L}-\Delta V_{C}$ directions, so they can be combined

- Their resultant is perpendicular to ΔV_{R}

RLC series circuit

(a)

(b)

- From the vector diagram, $\Delta V_{\max }$ can be calculated

$$
\begin{gathered}
\Delta V_{\max }=\sqrt{\Delta V_{R}^{2}+\left(\Delta V_{L}-\Delta V_{C}\right)^{2}}=\sqrt{\left(I_{\max } R\right)^{2}+\left(I_{\max } X_{L}-I_{\max } X_{C}\right)^{2}} \\
\Delta V_{\max }=I_{\max } \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
\end{gathered}
$$

(a)
(b)

$$
\Delta V_{\max }=I_{\max } \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

- The current in an RLC circuit is

$$
I_{\max }=\frac{\Delta V_{\max }}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{\Delta V_{\max }}{Z}
$$

- Z is called the impedance of the circuit and it plays the role of resistance in the circuit, where

$$
Z \equiv \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

RLC series circuit

$$
\left|\longleftarrow \Delta v_{R} \rightarrow\right| \longleftarrow \Delta v_{L} \rightarrow \psi^{2} \leftarrow \Delta v_{C} \rightarrow
$$

$$
\begin{gather*}
I_{\max }=\frac{\Delta V_{\max }}{Z} \\
Z \equiv \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{a}
\end{gather*}
$$

RLC series circuit: impedance triangle

$$
Z \equiv \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

(a)

- The impedance triangle can also be used to find the phase angle, φ

$$
\varphi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)
$$

- The phase angle can be positive or negative and determines the nature of the circuit
- Also, $\cos \varphi=\frac{R}{Z}$

$$
i=I_{\max } \sin \omega t \quad \Delta v=\Delta V_{\max } \sin (\omega t+\varphi)
$$

RLC series circuit

$\left|\longleftarrow \Delta v_{R} \rightarrow\right| \longleftarrow \Delta v_{L} \rightarrow\left|\longleftarrow \Delta v_{C} \longrightarrow\right|$

Table 33.1

(a)

Impedance Values and Phase Angles for Various Circuit-Element Combinations ${ }^{\text {a }}$
Circuit Elements \quad Impedance $Z \quad$ Phase Angle ϕ

$\cdot \stackrel{R}{-}$	R	0°		
$\cdot \\|^{C} .$	X_{C}	-90°		
$\stackrel{L}{L} \cdot$	X_{L}	$+90^{\circ}$		
$\cdot \mathfrak{W}_{R}^{R}-\\| \frac{\\|^{C}}{r}$	$\sqrt{R^{2}+X_{C}{ }^{2}}$	Negative, between -90° and 0°		
- W- reee-	$\sqrt{R^{2}+X_{L}{ }^{2}}$	Positive, between 0° and 90°		
	$\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	Negative if $X_{C}>X_{L}$ Positive if $X_{C}<X_{L}$		

[^0]$$
I_{\max }=\frac{\Delta V_{\max }}{Z}
$$
$$
I_{\mathrm{rms}}=\frac{I_{\max }}{\sqrt{2}}
$$

- The average power delivered by the generator is converted to internal energy in the resistor
$-P_{\mathrm{av}}=1 / 2 I_{\text {max }} \Delta \mathrm{V}_{\text {max }} \cos \varphi=I_{\mathrm{rms}} \Delta \mathrm{V}_{\mathrm{rms}} \cos \varphi$
- $\cos \varphi$ is called the power factor of the circuit
- We can also find the average power in terms of R

$$
P_{\mathrm{av}}=I_{\text {rms }}^{2} R=\frac{1}{2} I_{\text {max }}^{2} R=\frac{1}{2}\left(\frac{\Delta V_{\max }}{Z}\right)^{2} R=\frac{\Delta V_{\text {max }}^{2}}{2} \frac{R}{R^{2}+\left(X_{L}-X_{c}\right)^{2}}
$$

$$
P_{\text {av }}=\frac{\Delta V_{\text {max }}^{2}}{2} \frac{R}{Z^{2}}=\frac{\Delta V_{\text {max }}^{2}}{2} \frac{R}{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

- Resonance in $P_{\mathrm{av}}(\omega)$ occurs at the frequency ω_{o}

(a) where the current has its maximum value
- To achieve maximum current, the impedance must have a minimum value
- This occurs when $X_{L}=X_{C}$ or

$$
X_{L}=\omega_{0} L=X_{C}=\frac{1}{\omega_{0} C}
$$

- Solving for the frequency gives

$$
\omega_{o}=1 / \sqrt{L C}
$$

- The resonance frequency also corresponds to the natural frequency of oscillation of an LC circuit

$$
P_{a v}=\frac{\Delta V_{\max }^{2}}{2} \frac{R}{Z^{2}}=\frac{\Delta V_{\max }^{2}}{2} \frac{R}{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\frac{\Delta V_{\max }^{2}}{2} \frac{R}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

$$
\omega_{0}=1 / \sqrt{L C}
$$

$$
P_{a v}\left(\omega_{0}\right)=\frac{\Delta V_{\text {max }}^{2}}{2 R}
$$

- Resonance occurs at the same frequency regardless of the value of R
- As R decreases, the curve becomes narrower and taller
- Theoretically, if $R=0$ the current would be infinite at resonance
- Real circuits always have some resistance

(a)

[^0]: ${ }^{\text {a }}$ In each case, an AC voltage (not shown) is applied across the elements.

